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ABSTRACT 

This thesis presents the development of a methodology for the conceptual design of a 

medium tonnage warship’s combat system for the Colombian Navy.  The methodology is 

oriented toward the optimization of the operational effectiveness within the naval ship 

design constraints of weight, electrical power, volume, cost, and risk. The methodology is 

based on a Design Reference Mission (DRM), which is composed of four Operational 

Situations (OPSITs) covering antisubmarine warfare, anti-air warfare, mine warfare, and 

surface warfare.   

The OPSITs are represented by coupled physics-based models and probabilistic 

models.  A discrete event simulation tool, ExtendSim®, is used to implement these 

models, yielding quantitative results for mission success. Design of Experiments (DOE) 

is used to explore the design space, allowing identification of the main effects in each 

OPSIT model and the impact of each variable in the respective Measure of Effectiveness 

(MOE).  

The four OPSIT MOEs are integrated in a single Overall Measure of 

Effectiveness (OMOE), allowing the comparison among different configurations of 

combat systems, which is used to determine the best overall ship design to meet 

operational requirements. 
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I. INTRODUCTION  

A. BACKGROUND OF STUDY 

The Colombian Navy is developing preliminary studies for a new type of surface 

combatant ship, which it plans to build between the years 2019 and 2024. These new 

ships will replace the existing four 1500-ton “Almirante Padilla” light-frigates class built 

by the German Howaldtswerke (HDW) shipyard in the 1980s. This is the first attempt by 

Colombia to build its own middle tonnage combatant ship, and the Science and 

Technology Corporation for Naval, Maritime and Riverine Industries (COTECMAR is 

the acronym in Spanish) is building them.  

The name of the project is “Surface Strategic Platform” (PES is the acronym in 

Spanish). The project has a phase of planning, research, and the identification of 

requirements, which runs from 2007 to 2012. A design phase will follow and will run 

until 2018. Finally, the detail design and ship building phase will run until 2024. 

Retired Admiral Edgar Romero and Captain Jorge Carreño set the objectives of 

the project and have led COTECMAR’s preliminary studies [1]. The present work 

contributes to the following objectives of the project, which have been translated from the 

original in Spanish: 

• Design for appropriate characteristics of time, space, environment and 

scenario in which it will operate. 

• Determine and implement the requirements of the design and construction 

of the ship based on the determination of the characteristics of the sea, 

atmosphere, and scenario under which the ship will operate, through 

oceanographic, meteorological, and physical studies and through 

development of models and simulations. 

• Develop and implement procedures and tools for assessment and decision 

making. 
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• Develop the capability and means to use analysis tools, models, 

simulations and software, analysis effectiveness / cost and risk, for design, 

construction, project execution, and lifecycle. 

• Perform research and analysis of cost estimates for design, construction, 

project execution, and lifecycle to identify opportunities and several 

factors, such as standards and specifications and to apply cost-

effectiveness and risks analysis. 

Since the project deals with combat system design for a warship, it is worth 

pointing out that the classical definition of a warship, as stated by [2], divides it into two 

main components: the combat systems and the platform. That is:  

“WARSHIP = COMBAT SYSTEM + PLATFORM” [2]. 

Likewise, the combat system is defined as “The warship system of C3, Sensor and 

Weapon sub-systems and personnel which has been designed and integrated to provide 

the necessary warship fighting capabilities to enable its Command to meet specified 

mission and warfare objectives” [2]. 

B. PURPOSE OF STUDY  

The purpose of this thesis is to develop a framework for the Colombian Navy to 

follow for the conceptual design of the PES combat system, using computer modeling to 

explore the design space, and achieve the highest possible mission effectiveness within 

the normal constraints of ship design (weight allocation, electrical power, volume and 

cost).  

This thesis provides a synopsis of the concepts used during the design exploration 

process; then, it develops a Design Reference Mission (DRM) and Operational Situations 

(OPSITs) as the basis of the design. Furthermore, this study documents the development 

of the simulation models and assumptions made during the process. In addition, it uses 

statistical methods to study the effect of the design variables on the combat system 

effectiveness, and it briefly explores the risk associated with combat systems design for 
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surface combatants and ways to manage the risks, as well as techniques to incorporate 

cost estimation within the concept exploration phase. Finally, it states the findings, 

conclusions, and recommendations.  

C. BENEFITS OF STUDY 

The separation of the combat system design from the platform simplifies the 

problem of surface combatant ship design. Once the combat system with the highest 

overall effectiveness is selected, the payloads are identified and the platform is designed 

around both the combat system’s needs and other top level requirements.  

Simulating the operational situations provides the means to assess the overall 

effectiveness of the different combat systems configurations, while the use of statistical 

techniques allows identification of the design variables with greater influence on 

effectiveness, providing the ability to improve the response of the combat system against 

different assumed threats. 

D. SCOPE AND LIMITATIONS 

The scope of this thesis is the combat system design space of a surface combatant 

with a displacement between 1500 to 3500 tons. However, the focus is on the ship as a 

single unit; therefore, interactions with other friendly forces and the use of unmanned 

vehicles have not been considered in the development of the computer models. This 

simplifies the development of the models.  

The remainder of Chapter I develops a literature review of the methodologies and 

techniques used in the thesis. Chapter II presents the Design Reference Mission (DRM) 

and Operational Situations (OPSITs) development in an imaginary scenario that includes 

mine warfare, air defense, surface warfare, and submarine warfare, and it identifies the 

measures of effectiveness (MOE) for each particular situation. Chapter III illustrates the 

simulation models' development with the assumptions made during the process. Chapter 

IV focuses on the design space exploration, aided by statistical techniques to increase the 

efficiency of selecting the optimum combination of sensors and weapons with competing 

objectives. Chapter V presents the cost estimation and risk considerations for the design 
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of the PES combat system. Finally, Chapter VI presents the conclusion, 

recommendations, and identifies areas for further research. 

E. LITERATURE SURVEY 

The purpose of this part of the study is to identify the methods, tools, and 

definitions that have been successfully used in previous work to develop complex 

systems with competing technological characteristics, and design warship and combat 

systems. The focus is as follows: 

• Define the requirements using a Design Reference Mission (DRM) 

• Identification of requirements and metrics 

• Assessment of the ship design characteristics and their impact on mission 

performance. 

• Generation of alternatives and analysis methods 

• Determination of appropriate alternatives 

1. Design Reference Mission 

The first step in the concept development process, as identified by [3], is to fully 

define the requirements of the desired system. For interoperable systems that will be part 

of a system-of-systems, [4] recognizes the DRM as a common framework to be used for 

the comparison of analytical results from different system alternatives. This framework is 

also used as a baseline for subsequent systems engineering activities, like the generation 

of requirements, refinement of problem definition, development of concepts, and test and 

evaluation. The DRM is thought by [5] as a “simulated model environment to let system 

functions and physical concept alternatives perform.” [5] states that “creating a DRM 

begins with understanding the context,” which encompasses including a goal, a 

deployment of systems, a physical environment in which the operational activity takes 

place, the specific projected threat, and whatever changes the environment will undergo 

as the scenario progresses. The following steps are identified by [5] in the development 

process of a DRM:   
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1. Stakeholder statement of operational needs. 

2. Projected operational environment. 

3. Operational Situations (OPSIT).  

4. Mission definition.  

5. Mission execution.  

6. Mission success requirements.  

 

A definition of the content of those steps can be found in [3-6]. OPSITs require 

further explanation. They are particular instances of situations that could take place 

within the DRM. As [4] describes them, OPSITs provide single test points that 

collectively sample the problem space. Moreover, the design of OPSITs should stress 

selected system design attributes and support functional and performance trade-off 

analysis.  

The U.S. Navy uses the following two main publications as a framework for 

mission definition, execution, and determination of success requirements: the Universal 

Joint Task List (UJTL) [7] and the Navy Tactical Task List (NTTL) [8]. These 

publications provide hierarchical lists of capabilities of different levels, as well as metrics 

to assess them.  

2. Identification of Metrics 

To select the metrics to evaluate mission accomplishment, [9] designed specific 

tactical situations that put emphasis on the ship design characteristics that were under 

consideration. Measures of Performance (MOP) are metrics related to the tasks necessary 

for a particular mission and are derived from [7] and [8]. A similar approach was 

identified by [10], who describes in more detail the U.S. Navy concept design process, 

where “the requirements are developed based on Design Reference Mission (DRMs), 

which is in the ‘Problem Space.’”   

Although [7] and [8] will be used as references when developing the OPSITs, 

metrics will be tailored to the particular strategic scenario. On the other hand, the 

determination of the threats characteristics will be done without focusing on any 
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particular country or actual possible adversary. It will instead be based on technological 

trends, given the unclassified nature of this thesis. 

Also, for the purpose of consistency, the following metrics have been adapted 

after [11]: 
 

a. Factors or variables are parameter designs over which the designer has 

control, like radar antenna diameter, transmission power, or number of 

missiles. 

b.  Measures of Performance (MOPs) are the different success criteria 

considered in each OPSIT. 

c. Measures of Effectiveness (MOEs) are measures of the operational 

performance of the system, calculated as a function of the corresponding 

MOPs.  

d. Overall Measure of Effectiveness (OMOE) is the result of the multi-criteria 

analysis that combines the different MOEs. 

3. Assessment of the Ship Design Characteristics Impacts on Mission 
Performance 

For the assessment of the ship design characteristic impacts on mission 

performance, [9] uses a simulation tool tied to a Design of Experiments (DOE) 

procedure. The simulation tool is the Naval Battle Engagement Model (NABEM), a 

Monte Carlo based discrete event simulation model that is capable of simulating tactical 

environments with air-to-air, air-to-surface, surface-to-air, and surface-to-surface 

engagements. The DOE procedure is used, from the statistical point of view, to maximize 

the data from simulations. In this work, a central composite design was used to vary the 

design variables. With SAS’s JMP® software, a Response Surface Model (RSM) is 

generated to explore the design space. While focused on the individual mission’s effect 

on the change of input variables, this procedure can be expanded to cover the overall 

effectiveness of the system, weighting, in some way, the different sample missions 

considered. As identified by [3], RSM is a structured process that uses second order curve 

fits of desired data to generate a minimum collection of designs based on groups of 
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factors that permit the study of an entire design space. RSM also allows graphical 

representation of the design space for designers and stakeholders, which facilitates 

concept exploration and trade-off analysis.  

4. Generation of Alternatives and Analysis Methods 

As [12] points out, different concepts should be analyzed when designing a new 

system. This approach reduces the risk and increases the likelihood of achieving a 

product that is better than previous systems available in the market. Furthermore, [13] 

recommends developing architectural alternatives that are significantly different in their 

approach to meeting stakeholder requirements. An Architecture, as defined by [14], is 

“the selection of the types of system elements, their characteristics, and their 

arrangement.” Moreover, [14] identifies the following criteria for every alternative 

architecture: 

 

• Satisfies the requirements and external interfaces. 

• Implements the functional architecture. 

• Is acceptably close to the true optimum within the constraints of time, budget, 

available knowledge and skills, and other resources. 

• Is consistent with the technical maturity and acceptable risks of available 

elements. 

• Is extensible, i.e., accommodates system growth and introduction of new 

technologies. 

• Provides the base of information that will allow subsequent steps of system 

definition and implementation to proceed. The system architecture and 

operational concept, element descriptions, and internal interfaces are all 

adequately defined. 

• Is robust, i.e., allows subsequent, more detailed system definition to proceed 

with minimum backtracking as additional information is uncovered. 
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5. Choosing Between Alternatives 

A methodology is presented in [15] that allows forecasting of the system level 

impact of technological infusion in ship design. This methodology studies the impact of 

the different parameter, called a k-parameter, which, with respect to a baseline design, 

can be adjusted with the infusion of new technologies. Mathematical synthesis models 

are developed to assess the relative impact of every k-parameter in the Overall Measure 

of Effectiveness (OMOE). Those simulations are used to identify the k-factor with 

stronger influence in the OMOE. With those k-parameters, a number of experiments with 

different combinations of those parameters are performed. The number of experiments is 

a function of the number of k-factors selected. From there, a Response Surface Method is 

implemented to generate, from an infinite number of designs, a broader number of 

possible combinations of k-factor. The graphic representation allows the designers find 

the entire design space and enables decision makers to assess the impact of known 

technology for the allocation of resources in an optimum way for R&D.   

A similar procedure is followed in [16] with the notional design of a Conventional 

Submarine with Advanced Air Independent Propulsion System, though it has a greater 

focus on the iterations necessary to achieve a good design. Moreover, in this reference, a 

mission simulation context is developed in detail to measure the technological impact on 

the OMOE. 

From the literature survey, one can conclude that great effort has been devoted to 

both optimize the effectiveness of the design of complex systems like defense related 

ones, and save resources, which are always scarce. Although there are many alternatives 

for structuring the design process, based on the survey, the following steps are identified 

as a means to accomplish the objectives of the present study: 
 

1. Development of the Design Reference Mission and associated OPSITs 

2. Modeling of OPSITs in ExtendSim® 

3. Technological Survey of trends in Naval Combat Systems 

4. Create DOE with JMP® software 

5. Perform discrete event simulation in ExtendSim® 
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6. Create and explore design space through RSM using JPM® 

7. Consider cost and risk considerations 

8. Conclusions     
 

F. METHODOLOGY 

This research employs the following methodology. First, develop a fictitious 

DRM with a representative set of OPSITs and challenging threats.  Second, develop 

models for each OPSIT with discrete event simulation software ExtendSim®, and 

document the assumptions made. Third, design the experiments using statistical 

techniques to improve the amount of information captured from the models. Fourth, run 

the experiments. Fifth, analyze the design space with the SAS JMP® software. Finally, 

incorporate cost and risk considerations in the study of the combat system design space.  
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II. DESIGN REFERENCE MISSION (DRM) 

A. INTRODUCTION 

This DRM is to be used as a tool to aid in the systems engineering requirements’ 

definition process for the PES project, “its primary objective is to characterize the threat 

and operating environment that will serve as the baseline to support systems engineering 

activities” [4]. 

This document describes the background, DRM methodology, missions, threats, 

environments, specifications, and specific Operational Situations (OPSITs) related to the 

PES class ship development process.  

As discussed earlier, the terrain, operational concept, and threats characteristics 

used in the development of this DRM are not related to any actual intelligence data, given 

the unclassified nature of this work. Rather, the approach taken is to develop stressing 

scenarios based on consideration of expected state-of-the-art threats. 

The phrase “intelligence information” in this thesis refers only to the situation 

designed to support the DRM development process and assumptions in order to build the 

operational environment and does not refer to real intelligence. 

B. BACKGROUND 

Colombia faces a hostile strategic environment where its commercial activities 

have been affected by the military actions of Red country. After months of escalating 

political tension between the two countries, Red country has deployed its military forces. 

Naval ships and submarines from Red deny Colombian merchant ships the normal use of 

maritime routes, and it is necessary for Colombia to recover control of the sea. After 

years of buying military equipment from developed countries, Red has a military 

advantage in aviation, with several state-of-the-art aircrafts, but its naval surface forces 

could be comparable to Colombian forces.  
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Military actions have been confined to the maritime and aerial space, but it is 

expected that Red will try to invade some areas of Colombia as part of its military 

strategy. Naval mining operations are also an objective of the enemy as part of their 

strategy to gain the control of the sea. 

C. MISSION 

The PES platform, as a part of the task force, will conduct naval operations with 

the purpose of recovering control of Colombian sea, and gaining naval superiority over 

the Red forces. 

D. THREATS 

Probable threats for the PES include a multitude of sources in the air, surface, or 

sub-surface domains. Red forces intend to destroy port infrastructure, naval and military 

facilities, and the Colombian naval, air and land forces. Specific threats include the 

following: 

Air Domain: 

• Military State-of-the-Art Aircraft 

• Armed UAVs 

• Cruise missiles 

Surface Domain: 

• Surface Ships ranging from missile armed patrol boats to frigates 

• Armed USVs 

Sub-surface Domain: 

• Conventional Submarines 

• Armed UUVs 

• Torpedoes 

However, given the variability of the threat, it will be defined specifically in the 

context of each particular OPSIT. 
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E. ENVIRONMENT 

The PES will have to operate in different environments during its life cycle. 

Moreover, the Colombian maritime territory includes two very different general 

scenarios, the Pacific Ocean and Atlantic Ocean. However, given the recognized extreme 

characteristics of the latter for combat system efficiency, the Caribbean Sea, shown in 

Figure 1, will be the general geographic scenario where the OPSITs will take place.  

The sea wave conditions for this scenario are given by [17]. Those and other 

maritime conditions are listed in Table 1 and are used for OPSIT environment 

characterization: 

Table 1.   Limiting Environmental Conditions 

Max Wave High 7 m 
Average Wave High 1.5 m 
99.5% Confident Interval 
upper limit 

3.6 m 

Predominant Direction of 
the Wave (Coming From) 

NE 

Max Water Temperature 30 C° (86 F° ) 
Min Water Temperature 22 C°  (71.6 F° ) 
Wind Speed  2 – 15 m/s 
Water Depth 1,000 fathoms (average) 
Ambient Temperature 
Range 

24 - 34 C°  (75.2 – 93.2 F° ) 

 

 
Figure 1.   Area of Operations  
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The following four OPSITs will be generated and addressed within this DRM: 

1. OPSIT 1: Anti-submarine warfare. 

2. OPSIT 2: Anti-aircraft warfare 

3. OPSIT 3: Mine-warfare.  

4. OPSIT 4: Surface warfare 
 

F. OPERATIONAL SITUATIONS 

1. OPSIT 1: Anti-Submarine Warfare 

The PES class ship has been detached to the area of Santa Marta Bay in response 

to a reported Red submarine in the area. The submarine was first seen from a cargo vessel 

arriving in the port, and its presence has been confirmed by air-wing operations. Its 

presence is preventing cargo vessels loaded with Colombian coal from leaving the port, 

causing a serious economic impact on the nation. 

 From intelligence reports, it is believed with 95% confidence that the submarine 

is within an area of 80 NM x 80 NM outside the bay, as illustrated in Figure 2. The PES 

shall conduct a search for the submarine in that area to prevent submarine attacks against 

cargo vessels. When detected, the submarine shall be sunk and humanitarian search and 

rescue should be provided to the survivors. Once the PES ship arrives in the area, cargo 

ships will depart following an exponential distribution with a mean of two hours between 

ships.  

Given the lack of naval resources and the numerous vessels waiting for departure, 

each with different maritime routes, no escort operations will be conducted. Rather, the 

search for the submarine within the designated area will be developed to neutralize the 

threat. 

While conducting this operation, PES speed will be limited to the required sensors 

speed to avoid sensor degradation and increase the probability of detection. 
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Figure 2.   OPSIT 1 Area of Operations  

 

Maritime Conditions 

- Sea State: 3 

- Water Temperature: 24 C°  (75.2 F° ) 

- Ocean Depth: 300 fathoms 

 

Logistics 

- Able to sustain at-sea operations for 30 days 

 

Time Required to Complete Mission  

- TBD or until Red submarine has been neutralized 

 

Specific Mission 

- Protect cargo vessels in the area 

- Neutralize submarine threat 
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Threat 

- Primary – Red diesel-electric submarine  

- Secondary – N/A 

 

Assumed Threat General Conditions 

The threat is a Diesel-electric patrol submarine with Air Independent Propulsion 

(AIP), which reduces the probability of detection on the surface. The general 

characteristics are as follows:  

 

Table 2.   Assumed Characteristics of Diesel-Electric AIP Submarine  

Displacement: 1,400 Ton (Surfaced);  1,830 Ton (submerged) 

Length: 56 m 

Beam: 7 m 

Draft: 6 m 

Sonars: Low and medium frequency passive sonar system. Range: 
for surface ships 8 NM, for Merchant ships 12 NM. 

Torpedo tubes: 6 

Torpedoes: 12 [6m length; 0.533m diameter; Max Speed 35 kt; 
warhead 260 kg, Range 28 km at 35 kt; 12 km at 35 
kt; Fuse: magnetic proximity and impact ] 

Countermeasures: Yes 

Shafts: 1 

Speed: 12 kt (surfaced) 20 kt (submerged) 

Range: 8,000 NM at 8 kt (surfaced); 420 NM at 8 kt (submerged) 

Autonomy: >30 days, 15 days on AIP 

 

Mission Success Requirements 
 

The following metrics have been selected as decisive for determining the success 

of the mission attempted through the present OPSIT.  
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Table 3.   OPSIT 1 Mission Success Requirements  

M1 Percent Of cargo vessels surviving 
M2 Probability Of neutralizing threat 
M3 Probability Of PES survival 

 

2. OPSIT 2: Anti-Aircraft Warfare 

The PES ship is patrolling in Puerto Bolivar, a Coal Port located in the north of 

Colombia, as presented in Figure 3. The objective is to protect the maritime port, which, 

according to intelligence information, is going to be destroyed by Red aircraft. 

The protection of this infrastructure is critical for Colombian economic interests, 

since coal commerce represents an important piece of GDP. 

One week earlier, an aircraft attack destroyed a long-range radar designed to 

provide sea and air coverage of the north portion of Colombia. As a result, the only 

available sensors in the area are the PES sensors. 

The probable vector of attack ranges from 350 ° to 090°  and, according to 

intelligence reports, could be accomplished by 2 to 4 aircraft.  

The PES shall conduct a permanent search with its sensors and repel any attack. 

Its primary mission is to ensure the survival of the maritime infrastructure.  

 

 
Figure 3.   OPSIT 2 Area of Operations  
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Maritime Conditions 

- Sea State: 3 

- Water Temperature: 24 C°  (75.2 F° ) 

- Ocean Depth: 200 fathoms 

 

Logistics 

- Able to sustain at-sea operations for 30 days 

 

Time Required to Complete Mission  

- TBD  

 

Specific Mission 

- Protect maritime infrastructure 

- Neutralize air-threat 

 

Threat 

- Primary – Red Aircraft and ASMs.  

- Secondary – N/A 

 

Assumed Threat General Conditions 

The threat is a highly-maneuverable supersonic aircraft that can be used against 

ground and naval surface targets. The general characteristics and specific armament 

configuration, according to intelligence information, are as follows:  
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Table 4.   Assumed Characteristics of Supersonic Aircraft  

Maximum Speed Mach 2.2  
Range 2,000 km (1,079.9 NM) 
Ceiling 18,000 m (59,055 ft) 
Radar Cross Section 0.02 m2 [18] 
Armament 
 

1 gun cal. 30 mm 
Configuration 1 
6 ASMs 
Configuration 2 
10 Guided bombs 500 kg 
Drop Speed Range [500 – 1,900 km/h] 

ASMs Characteristics Range 285 km 
Warhead 320 kg 
Sensor active radar seeker 
Speed Mach 0.88 
Wingspan 130 cm length 5.7m  diameter 38cm 
Launching speed range [0.5 – 0.9 Ma]  
Launching altitude [200 – 11,000 m] 

AAMs Characteristics Range 130 km 
Warhead 39 kg 
Sensor semi-active radar homing 
Speed mach 4 
Wingspan 77 cm (large 4 m), diameter 23cm 

Contra measures ESM / Decoys 
Onboard Sensors Radar 6 kW (peak) 1.5 average   
 
 

Mission Success Requirements 
 

Table 5.   OPSIT 2 Mission Success Requirements  

M1 Percent Of maritime infrastructure damaged 
M2 Percent Probability of survival of ship 
M3 Number Of enemy aircraft destroyed 
 

3. OPSIT 3: Mine Warfare  

The PES ship has the mission of transporting important components for an aerial 

defense system in San Andres Island. However, the enemy has installed a mined zone in 

the channel of access to the southwest port1

                                                 
1 This is a fictitious port made with the intention of assessing the capabilities related with the OPSIT. 

 as seen in Figure 4, which prevents normal 
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navigation. No option other than breaking the mine zone is available. The ship has a 

trained team and the equipment to safely remove mines if they are detected.  

 

 
Figure 4.   OPSIT 3 Area of Operations  

 
Maritime Conditions 

- Sea State: 3 

- Water Temperature: 26 C°  (78.8 F° ) 

- Ocean Depth: 100 fathoms 

 

Logistics 

- Able to sustain at-sea operations for 30 days 

 

Time Required to Complete Mission  

- TBD  

 

Specific Mission 

- Cross mined zone  

- Transport vital components for Island Aerial Defense 
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Threat 

- Primary – Enemy naval mines  

 
Assumed Threat General Conditions 
 

Table 6.   Assumed Characteristics of Mines  

Type Moored mine 
Warhead 2000 lbs 
Length 128 in 
Diameter 29 in 
Deep Range Up to 600 ft 
Detection Magnetic & Acoustic 
Frontal density of minefield 20 mines/NM 
 

Mission Success Requirements 
 

Table 7.   OPSIT 3 Mission Success Requirements  

M1 Percent Probability of survival 

 

4. OPSIT 4: Surface Warfare 

The PES ship has been ordered to stop the advance of a landing force of Red that 

is aiming to land on the Colombian coast. In a previous air-air confrontation, both forces’ 

aerial capabilities were lost. Thus, the landing force is composed of only two landing 

units, one frigate, and one corvette.  

The main targets for the PES ship are the landing units. Sinking them will prevent 

the Red military from accomplishing its objectives. Thus, in this context, the mission to 

neutralize the landing force takes priority over the survivability of the PES ship.  

Before any detection takes place, the initial position of the Red landing force is 

300 NM relative to PES ship, which is navigating with a course perpendicular to the 

landing force course, and with the same speed (22 kt). 

 

 
Maritime Conditions 



 22 

- Sea State: 3 

- Water Temperature: 24 C°  (75.2 F° ) 

- Ocean Depth: 1,000 fathoms 

 
Logistics 

- Able to sustain at-sea operations for 30 days 

 

Time Required to Complete Mission  

- TBD or until Red landing force is neutralized 

 

Specific Mission 

- Stop landing force advance 

 

Threat 

- Primary – SSMs from Red landing force 

- Secondary – Parabolic Projectiles from Red landing force 

 

Assumed Threat General Conditions 

 
Table 8.   Assumed Characteristics of Landing Units  

Length, m 100 
Width, m 18 
Range, NM 9,000 
Vessel speed, knots 17.5 
Armament 2x Automated gun, caliber 30 mm. 

8 SAM  
Displacement 1,600 Ton 
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Table 9.   Assumed Characteristics of Corvettes  

Length, m 80 
Width, m 11 
Antenna high, m 20 
Range, NM 4,000 
Vessel speed, knots 27 
Armament 1 gun 76/62 

1 gun double 20/25mm 
8 SAM 
8 SSM (Exocet MM40 block 3 Range 180 
Km Diameter 34.8 cm) 

Displacement 1,500 Ton 
Sensors Radar 2D 

ESM 
IFF 

Contrameasures 2 chaff launchers 
 
 

Table 10.   Assumed Characteristics of Frigates  

Length, m 104 
Width, m 13 
Antenna high, m 24 
Range, NM 3,500 
Vessel speed, knots 30 
Armament 1 gun 76/62 

1 gun double 35mm 
8 SAM 
8 SSM (Exocet MM40 block 3 Range 180 
Km) 

Displacement 2,400 Ton 
Sensors Radar 3D 4 MW (Peak power) - 

Operational frequency 3 GHz 
IFF 

Contrameasures 2 chaff launchers 
 
 

Mission Success Requirements 
 

Table 11.   OPSIT 4 Mission Success Requirements  

M1 Number Of Red landing units killed 
M2 Number Of Red Surface Combatants killed 
M3 Number Of missile hits received 
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III. OPSITS SIMULATION SETUP 

The purpose of this chapter is to document the processes for developing the 

OPSIT simulation models, beginning with the study of the physical, probabilistic, or 

mathematical models that describe the different phenomenon that take place in each 

OPSIT.  

A. OPSIT 1 

1. Detection Models 

The detection of a submarine by a surface ship, as well as the detection of the 

surface ship by the submarine, depends on many physical and sensor dependent variables. 

In many analytical or computational studies, the effect of those variables is simplified 

with the use of easier-to-handle models. Some of them are shown in Figure 5. The easiest 

to implement is the cookie-cutter model. This model is used to represent the enemy 

detection capability, with the assumption that the detection distance is not modified by 

changes in the combat system parameters of PES ship. This model assumes the 

probability of detection is one inside a specified range and zero outside that range, as 

shown in Equation 1. 

1,
(1)

0,D

range R
P

otherwise
≤

= 


 

 
Figure 5.   Some Common Detection Models. From [19]. 
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Another approach to the detection problem is the use of acoustic propagation 

models, like the passive and active sonar equations. 

Passive acoustic sonar is the submarine's primary detection method. The passive 

sonar equation is an algorithmic equation, with all terms in decibels (dB) and is shown in 

Equation 2. 

( ) (2)SE SL TL NL DI DT= − − − −  

All terms in the passive sonar equation are described below: 

SL:  Source level is the amount of sound energy radiated by the target, when 

measured at the target. It is a characteristic of the target and its current operational 

conditions (speed, relative course, running machinery, etc.) 

TL:  Transmission losses are the amount of sound energy reduced while the sound 

waves travel from the source to the sensor. It depends mainly on the distance between 

source and sensor and frequency, since the attenuation coefficient varies highly with 

frequency, being higher (i.e., higher transmission losses) at increasing frequencies.  

NL:  Self-noise is the omni-directional sonar noise measured at the receiver, 

including ocean noise, flow noise over the sonar dome, and ship noise transmitted to the 

sensor through the hull or water.  

DI:  Directivity index is the amount of noise that the receiver is able to cut out. 

DT:  Detection threshold is the signal-to-noise ratio required to detect the target 

for a selected probability of detection and probability of false alarm, specified by the 

operator or the system designer. 

SE:  Signal excess is the difference between the provided carrier-to-noise ratio 

(CNR) and the CNR required for detection. 

The active mode sonar system, in conjunction with the passive mode, is the means 

the surface ship uses to detect a submarine threat. Most of the terms of the active sonar 

formula have already been defined for the passive equation. The difference is that the 
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transmission losses occur in two paths: from the sensor to the target and on the way back. 

The source level in this context is the sound produced by the sensor, rather than by the 

target.  

However, active sonar performance varies depending on the presence and 

importance of the reverberation phenomenon, which is noise produced by reflection of 

the sound waves from the bottom, the sea surface, and suspended matter in the water, as 

described by [20]. The active sonar equation is presented in Equations 3 and 4, after [21], 

in its two variations: 

 
2 ( )SE SL TL TS NL DI DT= − + − − −  (Noise limited)                (3) 

        2 ( )SE SL TL TS RL DT= − + − −  (Reverberation limited)  (4) 
  

The first new term in those formulas is the target strength (TS), which is a 

measure of the sound reflected by a target. TS is a function of the target material, size and 

shape; the second is the reverberation level (RL), which has two kinds of contributions: 

volumetric and surface. Volumetric reverberation is produced by bubbles, fish, and other 

marine life in the ensonified volume. Surface reverberation is produced by scattering 

from irregularities of the surface. 

The hierarchy of antisubmarine warfare models developed by [21] and presented 

in Figure 6, is used as guidance for selection of simulation models for this OPSIT.  

 
Figure 6.   Hierarchy of Antisubmarine Warfare Models. From [21]. 
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In the development of this OPSIT, the cookie-cutter detection model will be used 

to simplify the detection of surface combatant ships and merchant ships by the 

submarine. For the submarine detection by the surface combatant, on the other hand, 

acoustic detection models are necessary to capture the difference between different 

combat system’s performance when dealing with a constant threat. 

Based on the above description of terms in the acoustic models, the following 

factors are critical to determine the detection range, and depend on the selected scenario 

and threat: 

Table 12.   Scenario Dependent Parameters  

Factor Value Source 
Salinity (parts per thousand) 36 Figure 6.3 & 6.4 [22] 
Temperature ( C° ) 27 OPSIT 1 
Depth of sensor (m) 5 Assumed platform characteristic 
Speed of sound (m/s) 1,581.1 Eq. 6.22 [22] 
Bottom losses (dB) 16 Average value based on Figures 6.17 

& 6.18 [22] 
Noise level (NL) (dB) 60 Figure 7.5 [19] 
 

The target strength is a threat dependent parameter, but it also varies with the 

aspect of the target relative to the sensor, as well as with the angle between the horizontal 

plane of the sensor and the horizontal plane of the submarine, as presented in Figure 7, 

from experimental measurements by [23]. 
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Figure 7.   Dependence of Target Strength on Aspect and Elevation Angle. From [23]. 

Since the characterization of a particular threat is outside the scope of this thesis, 

the TS characteristics of a known submarine that closely matches with the length and 

beam of the one described in OPSIT 1 will be used, from [23]. Hence, a peak value of 25 

dB for beam aspect at 0 ° elevation angle and a lowest value of 6 dB for bow or stern 

aspect will be used. 

 
Table 13.   Sensor System Dependent Parameters  

 
Factor Value Source 
Attenuation Coefficient 
(dB) 

Implemented in look-up table 
in the model (frequency 
dependent) 

Table 18 

Scattering losses (dB) 1.04*( )* ( )Sea State f kHz  Eq. 6.73 [22]  
(Frequency dependent) 

SL 171 10log( * )ffP E DI+ +  [20] 
TL (dB) 20log (0.001 )R Rα+  Eq 11.30 [20] 

(Frequency dependent) 
DI Depends on the Array type and 

number of elements. 
Table 15  
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The following factors should be input for every configuration of sensors: 

• Frequency, 1 to 100 kHz [20] 

• Array Type (linear, rectangular, circular, cylindrical)  

• Height of array (for rectangular or cylindrical) 

• Diameter of array (for circular or cylindrical) 

• Length of array (linear or rectangular) 

• Integration time, in seconds 

• Power, in watts 

• Power conversion efficiency  

 

Table 14.   Directivity Index. From [22]. 
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Table 15.   Attenuation Coefficients for Different Frequencies. From [19]. 

 

 
 

From equation 11.31 and curve 11-24 in [20], a probability of detection 

0.9DP = and a probability of false alarm 410FP −=  were selected. With those 

assumptions, a parameter d is obtained from the curve, with a value d = 14 dB. This 

parameter is used to calculate the detection threshold (DT), as follows: 

/101010*log
2

d

DT
T

 
=  

 
, where T corresponds to the integration Time. (5) 

This integration time is recommended to be 10–15 cycles; thus, this parameter is 

frequency dependent.  

Once the characteristics of the sensor are selected, the DT should be higher than 

the CNR for the detection to take place.  
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2. Search of the Submarine 

Although several types of search plans can be developed for this operational 

situation, the objective of the present study is not to assess the effectiveness of such 

methods. Rather, a specific search pattern would be selected to assess the different 

combat system configurations in fulfilling the mission. The selected method is a 

crossover patrol as described by Figure 8, beginning the search from the upper left corner 

of the search area.  

 
Figure 8.   Selected Search Method  

The behavior of the submarine, on the other hand, is assumed to be random in its 

course once it reaches one of the limits of the navigation area, and in straight lines 

between the limits. 

3. PES – Submarine Interactions 

The behavior of the submarine and PES are difficult to model since they include 

not only the physical characteristics of the systems, but also the tactics and decisions 

taken by the humans in the loop. Since that topic is outside the research of this work, a set 

of assumptions are made to define the behavior of both the submarine and the ship. 
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It is assumed that the interaction between the submarine and PES will begin after 

one detects the other. Furthermore, once each platform has released torpedoes against its 

opponent, it is assumed they set maximum speed in the opposite direction of the threat 

position to get out of the range of the attacking torpedoes. The success of the attack for 

each torpedo is then a function of the maximum speed of the opponent, distance when 

fired, torpedo battery life, and torpedo speed. 

It is also assumed that there is a higher hit probability HitP  for the submarine 

launched torpedo than for the surface ship launched torpedo, based on the larger 

volumetric search that the latter has to perform in order to detect and track its target. 

4. Submarine Attack to Merchant Ships 

Given the limited amount of torpedoes available, it is assumed the submarine will 

attack a merchant ship only if the kinematic analysis of the target and energy storage of 

the torpedo allows it to reach the target. Otherwise, the submarine would let the merchant 

ship pass and would wait until the next contact. For each torpedo launch, the chance of 

hitting the merchant ship would be defined by a probability input to the model that takes 

into account the reliability of the weapon. 

5. Model Implementation 

The branch of the model represented in Figure 9 simulates the submarine 

displacement within its patrol area. Random numbers with uniform distributions are used 

to generate the initial position and initial course. 
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Figure 9.   Submarine Navigation Model  

 

Since the PES ship follows a predetermined patrol search method, its path was 

implemented through a look-up table. It will follow that path until it detects a submarine. 

This depends on the sensor characteristics, the environment, and the submarine 

parameters. Its navigation simulation is represented in Figure 10. In this model, the 

distance between submarine and PES ship is constantly measured and fed to the detection 

assessment. 

 

 
 

Figure 10.   PES Navigation Model  
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Figure 11 represents the branch of the model that simulates the merchant ships' 

transit through the area. Twelve merchant ships are created with exponential distribution 

between arrivals with a mean of 60 minutes. All merchants use the same entrance point 

that corresponds to the exit of the bay channel and follow a course that is random and 

uniformly distributed between 315 °  and 045 ° . If the merchant is detected by the 

submarine, and it is within the Red submarine’s range, a torpedo is launched from the 

submarine against the merchant.  

 

 
 

Figure 11.   Merchant Ships’ Navigation Model 

Figure 12 represents the interaction between the submarine and merchant ships. 

The outcome of the interaction, if the torpedo is fired, is defined by probabilities that are 

input to the model.  

 
 

Figure 12.   Merchant Engagement Model  



 36 

The PES-submarine engagement is modeled by the branches shown in Figure 13. 

The distance at the interaction time, probability of a hit of torpedoes, number of 

torpedoes, platforms’ speed, and torpedoes operational characteristics define the 

engagement. In the case of the submarine, it also depends on how many attacks it has 

carried out against merchants, since every attack reduces the number of torpedoes 

available at the moment of the engagement. In all those engagements, the probability of 

kill, given a hit, is assumed as one (i.e., P(Kill|Hit)=1.) 

 

 

 

Figure 13.   Submarine-PES Engagement Model  

Figure 14 presents the interface developed for the input parameters. In this 

window, the user can easily modify the parameters used for the simulation. 
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Figure 14.   Input Parameters for OPSIT No.1  

B. OPSIT 2 

1. Calculation of the Probability of Damage to the Port for Individual 
Bombs 

The use of guided bombs for such a large target allows an assumption that the 

probability of a hit (PHit) is one. This structure can be considered as a bridge; therefore, 

the amount of damage depends primarily on the distance of the bomb to the piles of the 

port. If the bomb lands in the middle of two piles, the probability of damage is the 
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highest, and it decreases to the lowest value when the bomb lands over the pile itself. 

This situation is described in Figure 17, without consideration of the reliability of the 

bomb. 

 

 
 

Figure 15.   Puerto Bolivar Coal Port (Target) 

 

 
Figure 16.   Dimensions of the Target 
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Figure 17.   Probability of Damage as a Function of Distance to Piles 

Since the attacking aircraft pilot cannot determine the location of piles, the 

probability of hitting any particular location of the span between piles is described by a 

uniform probability, as shown by Figure 18. 

 

 
Figure 18.   Uniform Probability for Bomb Distance to Piles  
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The assumed Reliability of the bomb is 95% (i.e., 95% of the bombs will detonate 

when they hit the target), as described by Figure 19. 

 
Figure 19.   Bomb Reliability  

The situation of a single bomb dropped on the wharf was studied using a Monte 

Carlo simulation implemented with the software Cristal Ball®. With 100.000 

replications, the model obtained a mean P(Damage|Hit) of 0.52, which will be the 

assigned probability of damage used in the model for individual bombs. 

 
Figure 20.   Frequency Plot of Monte Carlo Simulation Output  
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Table 16.   Monte Carlo Simulation Output  

Forecast: Prob. Damage 

Statistic Forecast values 
Trials 100,000 
Mean 0.52 
Median 0.53 
Mode 0 
Standard Deviation 0.23 
Variance 0.05 
Skewness -0.306 
Kurtosis 2.37 
Coeff. of Variability 0.441 
Minimum 0 
Maximum 0.9 

Mean Std. Error 0 
 

2. Aircrafts and Air-Surface Missiles Detection 

Using both the Radar Equation (Equation 6) and common parameters used for air 

defense design, as identified in the 4th column of Table 14 from [18], the CNR can be 

calculated for a given range, while neglecting transmission, reception, and atmospheric 

losses. 

4 2

2 4 (6)
64

T T RP L L DP eCNR
kTBF kTBF R

απ σ
λ

−

= =  

Based on those assumptions, the detection range of the target is calculated in the 

ExtendSim® model for each of the specific sensor parameters. 
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Table 17.   Reference Parameters. From [18].  

 

3. Bomb Release Distance Estimation 

Given the range of speed and altitude for the weapons, a flight altitude of 5000 m 

and aircraft speed of Mach 0.6 (192 m/s), with a zero dive angle and a common ejection 

velocity of 2 m/s has been assumed to characterize the aircraft attacking the coal wharf.  

Based on the aforementioned inputs, a zero-drag model was developed in Excel 

and is shown in Table 18. The conclusion is that the aircraft should release bombs 6092.4 

m ahead of the target in order to succeed in their attack. That is also the limiting distance 

in which the aircraft should be destroyed, in order to avoid their release of bombs. 

 

Table 18.   Zero-Drag Model for Weapon Trajectory  

INPUTS OUTPUTS
Initial height (m) 5000.00 TOF (sec) 31.72
Aircraft speed (kt) 373 Horizontal velocity at impact (m/s) 192.04
Dive Angle (degrees) 0.00 Vertical velocity at impact (m/s) 313.22
Ejection velocity (m/s) 2.00 Impact velocity (m/s) 367.40
Initial horizontal velocity (m/s) 192.04 Impact angle (rad/deg) 1.02 58.49
Initial vertical velocityvelocity (m/s) 2.00 Ground range (m) 6092.41

Gravity (m/s2) 9.81 Slant Range (m) 7881.46

TRAJECTORY FOR ZERO-DRAG MODEL
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4. Probability of Kill and Probability of Survive 

The probability of kill is characteristic of the interaction between each particular 

target and weapon. Estimations about those characteristics will be input to the model for 

each combat system configuration. In the case of gun shots against incoming missiles, the 

probability of kill in Equation 7 is a function of the single shot probability and the 

number of shots:  

_1 (1 ) (7)n
K K SingleP P= − −  

In Equation 8, the probability of survival, or survivability, is defined as one minus 

the kill probability: 

1 (8)S KP P= −  

5. Model Implementation  

The attacking aircraft force is divided into two groups of two aircraft each. Group 

1 will attack the PES ship, while Group 2 will attack the maritime port. Figure 21 

represents the release of missiles from Group 1. Here it is assumed that, given the long 

range of the weapon, the aircrafts' tactics will consist of releasing the missiles at their 

maximum range to avoid detection. A time between launches of 1.5 seconds is assumed 

for each aircraft. 

 

 
 

Figure 21.   Group 1 of Aircrafts Releasing ASMs  
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At the end of the missiles’ release, the aircraft will be at their closest distance to 

the ship. If they are detected, one missile will be fired against each one. The aircraft, 

which were flying at weapon release speed range, increase to their maximum speed 

(Mach 2). The branch in Figure 22 represents the chances of aircraft detection, and the 

chances of missile hits. 

 

 
 

Figure 22.   Anti-Aircraft Defense   

The branch in Figure 23 models the defense of the ship against incoming Air-to-

Surface Missiles (ASM). Based on the kinematics of incoming missiles and interceptors, 

as well as detection range and specified weapon characteristics, the SAM missiles are 

fired until they reach 50% of the total. Detection delays are treated with probabilistic 

distributions inside the activity blocks.  

The reason for saving 50% of the missiles is that a second group of aircraft are 

going to attack the coal wharf, and the defense of that wharf constitutes the mission of the 

PES ship.  
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Figure 23.   Anti-ASM Defense with Missiles  

Once all of the SAMs are shot, the remaining leakers will be fired upon with 

guns. A branch of the model in Figure 24 represents that interaction. The probability of 

kill for the gun interaction is calculated from the maximum and minimum range of a 

particular gun system, as well as the projectile speed, rate of fire, and single probability 

of kill of a single projectile. If the gun fails to hit the missile or if it is busy with another 

missile, the missile is characterized with a probability of hit on the ship itself.  

Since the survivability characteristics of the platform is not within the problem 

scope, the probability of kill given a hit ( /K HP ) is assumed to be one.       

 

 

 
Figure 24.   Anti-ASM Defense with Guns  
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Figure 25 is the branch of the model that recreates the interaction between the 

PES ship and the aircraft attacking the wharf. Section 3 defines the release distance for a 

particular flight condition. Based on that, if the aircraft are detected far enough away and 

destroyed before reaching the release distance, the wharf is safe. There are two other 

courses of action represented in this model, which are based on the sensor and weapon 

characteristics of the PES ship: 

-The PES ship does not detect the aircraft 

-The aircraft are detected after the bombs are released 

 
Figure 25.   Wharf Defense 

Figure 26 represents the input data necessary for the model. The threat data will 

be fixed, while the rest of the parameters will depend on the selected Combat System 

characteristics. 
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Figure 26.   Input Parameters for OPSIT No. 2  

C. OPSIT 3 

1. Mines Relevance 

A discussion of the use of mines is very relevant to the development of this DRM, 

because if used properly, they can be extremely effective and used at a relatively low cost 

by the antagonist. As demonstrated by naval history, even navies with modest budgets 

can acquire and use mines, thereby delaying naval operations and forcing the allocation 

of resources to minesweeping. Recent examples of successful mine utilization include 

two U.S. Navy ships damaged by mines in the Iraq invasion [24], and one more damaged 

during in the Iran-Iraq war [25]. Also 5 U.S. ships were sunk and 6 were damaged in the 
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Korean War [26]. Actually 46 countries have mine capabilities, with 28 countries 

producing mines and 14 confirmed as mine exporters [27]. 

Therefore, it is still an important aspect of naval warfare and should be considered 

when designing a naval ship. Capital ships cannot rely on external assets for mine 

detection that may not be available, mainly because there may not be previous 

intelligence information about the presence of mines in their area of operations. 

2. Initial Assumptions 

Some assumptions about the minefield will be made relative to the channel the 

ship is going to cross. This path is going to be kept constant. 

Figure 27 represents the aim of the enemy that has planted the mines. However, 

there is an error in planting the mines, and it is represented with a normal distribution 

respect to the desired placement points, with a mean of zero meters and standard 

deviation of 30 meters. This error is only considered in the transverse direction, since 

errors in the longitudinal direction are assumed to have minor effect on the result. 

 

 
Figure 27.   Description of the Desired Placement of Mine Distribution  
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Once the configuration of the threat is defined, there are still two problems to be 

considered: 

• Detection of mines 

• Mine effectiveness 

3. Detection Problem 

A description of the terms involved in the active sonar equation was provided in 

section A.1 of this chapter. The description parameters used for this particular operational 

situation are below: 

 

Table 19.   Scenario Dependent Parameters  

Factor Value Source 
Salinity (parts per thousand) 36 Figure 6-3 & 6.4 [22] 
Temperature ( C° ) 27 OPSIT 3 
Depth (m) 5 Assumed 
Speed of sound (m/s) 1581.1 Eq. 6.22 [22] 
Bottom losses (dB) 16 An average value based on 

Figures 6-17 & 6-18.[22] 
Target Strength TS (dB) -14.7 Based on Table 11-11 and 

assumed mine radius. [20] 
Noise level (NL) (dB) 60 Figure 7.5 [19] 
 

Table 20.   Sensor System Dependent Parameters  

Factor Value Source 
Attenuation Coefficient 
(dB) 

Implemented in look-up table 
in the model (frequency 
dependent) 

Table 18 

Scattering losses (dB) 1.04*( )* ( )Sea State f kHz  Eq. 6.73 [22]  
(Frequency dependent) 

SL 171 10log( * )ffP E DI+ +  [20] 
TL (dB) 20log (0.001 )R Rα+  Eq. 11.30 [20] 

It is Frequency dependent 
DI Depends on the Array type and 

number of elements.  
Table 17  
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As before, the following factors should be input for every configuration of the sensors: 

• Frequency, 1 to 100 kHz [20] 

• Array Type (linear, rectangular, circular, cylindrical)  

• High of array (for rectangular or cylindrical) 

• Diameter of array (for circular or cylindrical) 

• Length of array (linear or rectangular) 

• Integration time, in seconds 

• Power, in watts 

• Power conversion efficiency  

 

As in OPSIT 1, a probability of Detection 0.9DP = and a probability of false 

alarm 410FP −=  were selected, given the parameter d=14dB. With those choices, and 

based on the DI, the detection threshold (DT) is calculated. 

4. Mine Effectiveness 

The probability of actuation of the mine depends on the sensitivity of the mine 

and the minimum athwartship distance during the pass through the channel. Since it 

depends not only on the mine characteristics, but also on the platform signatures, it is 

necessary at this point to assume a behavior profile, which was adapted from [28]. It is 

described in Figure 28. 
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Figure 28.   PACT Vs. Athwartship Distance. After [28].  

It is also assumed that, if the mine is actuated, the probability of damage is 1. This 

is a conservative assumption, given the unknown survivability characteristics of the 

platform which is out of the scope for this thesis. The maneuverability of the ship related 

to the different detection distances is assumed in the same way:    

• If the detection distance to the mine is below 100 m, the ship does not have 

enough reaction time and will have to face the mine, as if it did not detect the 

mine. 

• If the system is detected between 100 m and 300 m, the ship is able to maintain 

the distance from the mine. However, since it is within the actuation distance of 

the mine, it is probable that the mine will activate and damage the ship while 

being deactivated. 

• If the mine is detected before 300 m, the ship is assumed to have the means to 

safely remove the mines, with no probability of activation.  

Those assumptions and parameters have been modeled using discrete event 

simulation in ExtendSim®. 
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5. Model Implementation 

 
Figure 29.   Mine 1 Branch  

The simulation is represented by three very similar branches, one for each mine. 

The branch for mine 1 is represented in Figure 29, and branches for mines 2 and 3 are 

represented in Figures 30 and 31 respectively. Once the ship is created, an initial distance 

to the mine is assigned as an attribute. The ship is maintained within the loop until the 

CNR gets equal or bigger than zero. There are three possible paths, which depend on the 

detection distance, according to the ranges described above. There is also a variable delay 

associated with each path.   

 

 
Figure 30.   Mine 2 Branch  
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Figure 31.   Mine 3 Branch  

D. OPSIT 4 

1. Detection of Surface Ships 

Section B.2 of this chapter presented the radar detection formula. However, 

surface ship detection is limited by the earth’s curvature. The formula in Equation 9 for 

radar horizon establishes this limitation as a function of the radar antenna altitude and the 

target altitude. It also accounts for the refraction phenomenon that blends waves toward 

the earth’s surface, increasing the detection range, as seen in Figure 32. 

2Re'* 2Re'* (9)RH t rR h h= +  

In the above formula, Re is the earth’s radius, which corresponds to 6378 km  at 

standard atmospheric conditions. Re'  is the equivalent earth radius caused by 

atmospheric refraction, and it is approximately 4/3 of the earth’s radius (i.e., 

4Re' Re
3

≈ .); th and rh correspond to the transmitter (the searching platform) antenna 

altitude and the receiver (the target) altitude, respectively.  
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Figure 32.   Radar Horizon. From [29].  

By applying the above formula to the Red frigate—PES detection problem, with 

the antenna high equal to 24 m for both, the maximum detection range would be equal to 

40.41 km.  

2. RCS Estimation 

Skolnik (1980) suggested Equation 10 to estimate the median RCS of a ship based 

on its displacement and the frequency of operation of a given seeker [30]: 

2
31644 (10)kT GHzm

D fσ = × ×  

Assuming a PES mean displacement of 2000 Ton and since the Red frigate’s 

radar frequency is 3 GHz, the PES RCS is estimated as: 

2
3 21644 2 3 8054

m
mσ = × × =  

This estimated RCS allows for calculating the distance at which the Red frigate 

detects the PES ship, by using the radar formula discussed in section B.2 of this chapter. 

By doing so, and neglecting attenuation losses, the frigate detection range would be 407.8 

km. However, in this case, the radar horizon is lower than that distance, limiting the 

detection range to 40.41 km, as calculated in the previous section.    
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The same method will be implemented within the ExtendSim® model to estimate 

the RCS of Red ships.  

For the Red SSM missiles, the RCS was calculated using the sphere 

approximation, Equation 11. Based on the missile diameter (34.8 cm), its RCS is 0.113 

m2. 

2
2 (11)

m
rσ π= ×  

The PES SSM missiles' RCS will be modeled within ExtendSim® using the same 

approximation and will change as a function of the chosen missile dimensions. 

3. Probability of Hit for Surface-Surface Missiles 

Table 21 shows the result of the historical analysis developed by [31] of missile 

engagements against ships, both combatant and non-combatant, which have occurred 

since 1982. In the analysis, the targets are divided into three categories: “defenseless,” 

targets without defense capabilities, such as merchant ships; “defendable,” surface 

combatants that were not able to respond to the attack due to their readiness state; and 

“defended,” targets, which in fact reacted against the missile with some soft kill or hard 

kill contra measures.  

Those probabilities are incorporated within the model, as a means to determine 

the success of independent PES fired SSM against the Red units. The success of Red 

fired SSMs, on the other hand, will depend on the combination of hard and soft kill 

measures, as well as sensor parameters used by PES.  

 

Table 21.   Probability of Hit of SSM. After [31].  

 Probability of Hit 

Defenseless Target 0.981 

Defendable Target 0.630 

Defended Target 0.450 
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4. Model Implementation 

The figure below depicts the possible series of events simulated in the 

ExtendSim® model. Since Red detection is only limited by the radar horizon, and both 

Red and PES are assumed to have the same antenna height, the following are the only 

two possible options: 

• Both the Red force and PES ship detect each other simultaneously, or 

• Red force detects PES, but PES cannot detect Red force. 

 
Figure 33.   OPSIT 4 Event-Tree  

Figure 34 illustrates the launch of Red missiles, as well as PES detection, 

tracking, and SAM launch. The engagement options considered are two, as described in 

the event tree: the first option is the simultaneous detection and fire of SSMs of PES and 

Red forces, which happens when PES detection is limited by radar horizon. The second 

option is only Red detection and firing of SSMs, which takes place when the PES ship 
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does not detect the Red battle group. This happens when PES detection is limited by 

radar characteristics, rather than the radar horizon.  

Red missiles are launched from each platform with a lognormal distribution with 

mean time between launches of one second and standard deviation of 0.1 second. Once 

PES detection takes place, it defends first with SAMs. An initial delay of 5 seconds is 

assumed for tracking and classifying the threat, as well as a mean time between SAM 

launches of one second. 

 

 
Figure 34.   OPSIT 4 Detection, Tracking and Defense with SAMs  

Figure 35 represents the rest of PES engagement paths depending on the point 

defense configuration. Options include decoys, close in weapon systems, a combination 

of both, and neither. The final output of each path is defined by probabilities input by the 

user. 
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Figure 35.   OPSIT 4 Point Defense Options  

Figure 36 presents the launch of PES SSMs, provided that Red fleet detection 

takes place and kinematics analysis validates that enemy targets are within range. Figure 

36 also represents Red’s first layer defense with SAMs, while Red point defense of 

leakers is represented in Figure 37, which is based on the probabilities defined in Table 

21. 

 

 
Figure 36.   OPSIT 4 SSM Launch  
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Figure 37.   OPSIT 4 Attack Output   



 60 

THIS PAGE INTENTIONALLY LEFT BLANK 



 61 

IV. EXPLORING THE DESIGN SPACE 

A. DESIGN OF EXPERIMENTS (DOE) AND RESPONSE SURFACE 
MODELS (RSM) 

DOE in general is a statistical technique used to maximize the information about a 

process using a minimum of effort. By using DOE, the effect of many possible variables 

(called factors) on the process output (or response) can be identified.  

DOE provides a structured approach for analyzing a process, since it allows the 

identification of which factors of the system to be designed have the greatest effect on the 

response, as well as the interactions between factors. In addition, it does this while 

keeping the amount of modeling and simulation to a minimum. 

Once the most important variables have been identified, it is usually beneficial to 

design another experiment with those variables as factors at a higher number of levels. As 

revealed by [32] and [33], which implemented these these techniques precisely in the area 

of simulation, it is possible to develop a higher order model with the resulting data. The 

plot of that model would be a three-dimensional surface that can be used to predict the 

simulation responses. This model is called a “response surface” or “metamodel”. 

In this thesis DOE, RSM, and the consequent analyses are performed using SAS 

JMP® software, which provides the means for exploring the design space in the 

conceptual phase of the combat system design, with the purpose of identifying the 

combat system variables that most influence the system effectiveness, described by the 

OMOE. 

The early identification of those variables allows a designer to focus scarce 

resources, and the allocation of power, weight, and volume in a way that optimizes the 

ship design.   
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B. SELECTION OF LEVELS FOR EACH FACTOR 

The selection of factor levels was as follows: first, develop a study of the systems 

of interest used in surface combatants, both in service or in development, in the range of 

displacements of frigates, corvettes, and OPVs. Second, conduct research in the open 

literature for each main sensor or weapon, in some cases calculating the unknown 

variables based on the available information. Finally, identify the lowest and highest 

value for each variable and use these values for the DOE. A summary of the collected 

information is presented in Appendix A. 

The reason for this approach is to characterize the weapons and sensors that naval 

architects have used in the design of combatant ships in the displacement range that could 

be of interest to the Colombian Navy.  

C. ANALYSIS OPSIT 1 

Table 22 presents the experimental design layout, using a fractional factorial 

design. This is a screening design that uses just two levels for each factor, and consists of 

sixteen experiments. The table also presents the outputs of the simulation for each one of 

the three relevant metrics, as well as the MOE. The MOE is a function of metrics M1 

(Merchant Survivability), M2 (Probability of kill the submarine), and M3 (PES 

Survivability), as seen in Equation 12. The combination of these three metrics into a 

single MOE should be based on stakeholder’s definition of success criteria. In this 

particular situation, the three metrics has been given the same coefficients for the purpose 

of illustration, that is: 

1 2 3* 1 * 2 * 3MOE M M Mω ω ω= + +   where 1 (12)
3iω =  

However, during this OPSIT analysis, all the metrics are carried through with the 

intention of highlighting the drawbacks of combining different metrics into a single 

metric (i.e., the MOE).  
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After running the simulation model for the different combinations of sensor and 

weapon parameters, a model was fitted in JMP® to the data against MOE and the 

individual metrics. The details of the statistics of the model are in Appendix B. 

Table 22.   DOE Matrix and Response for OPSIT 1 

 

The two individual variables that have the highest influence in the MOE were 

identified as sonar transmission power and height of the sonar array. But there is also a 

strong relationship between sonar frequency and torpedo speed, which makes those 

factors important. This information is presented graphically in Figure 38, where the plot 

shows that more than 90% of the response is due to the combination of the four described 

factors. On the other hand, variables like sonar array diameter, torpedo warhead weight, 

and number of torpedoes have little influence on the output, and consequently, these can 

be fixed at a convenient level for further analysis of the most critical factors.  

 
Figure 38.   Pareto Plot for the Screening Design Model 
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Since the first set of experiments is just a screening developed for quick 

identification of the important factors, it is necessary to design a new set of experiments 

with more levels for those factors (i.e., transmission power, array diameter, frequency, 

and torpedo speed), while keeping the other parameters fixed at a convenient level. Then, 

a central composite design with 26 experiments was selected. The excluded parameters 

were fixed at their lowest value, given their minor contribution to the MOE. 

As a result of the second set of experiments, a new model was fitted to the data, 

given the relationship between inputs and metrics illustrated through the prediction 

profiler shown in Figure 39.  

 

 
Figure 39.   OPSIT 1: Prediction Profiler for MOE  
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The non-linearity of the responses is clear in Figure 40. Furthermore, it can be 

deduced from Figure 40 that the combination of different competing metrics into a 

unique MOE has the effect of hiding valuable information necessary for the decision 

makers. Therefore, it is useful to keep this information for a trade-off between the 

different mission success criteria. 

An efficient way of making a trade-off between variable levels and metrics is with 

the aid of the contour profiler available with JMP®. An example for OPSIT 1 is 

presented in Figure 40. In this plot, the X and Y axis correspond to two factors, in this 

case, sonar frequency and transmission power, respectively. The other factors have been 

set to an arbitrary level. Contour lines (which are projections of the RSM on the two 

input variables plane) represent the metrics of the OPSIT, including the MOE.   

In the contour plot, changing the limits of the metrics changes the shadowed area, 

leaving the available design space white. If no white area is left, then a trade off would be 

necessary to lower some of the metrics’ requirements. This plot is also a good example of 

what happens when several metrics are combined in a unique MOE. The MOE contour 

does not represent the stakeholders’ desired relationship between the three metrics. In 

other words, it does not tell us which metrics of the OPSIT should be traded off in order 

to achieve a higher overall effectiveness. 
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Figure 40.   An Example of Contour Profiler 

D. ANALYSIS OPSIT 2 

Figure 41 presents the prediction profiler for OPSIT 2. An L18 design was 

selected (see Appendix B) to assess the effect of the nine factors over the MOE, which is 

the combination of the OPSIT’s MOPs (i.e., M1: Pier survivability; M2:  Red Aircrafts 

killed; M3: PES survivability). As in the previous OPSIT and using Equation 13, all the 

metrics have been assigned the same weighting, that is: 

1 2 3* 1 * 2 * 3MOE M M Mω ω ω= + +   where 1 (13)
3iω =  
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Figure 41.   OPSIT 2: Initial Screening Prediction Profiler 

In the prediction profiler, Figure 41, the minor contribution of the factors SAM 

speed, projectile speed, and fire rate to the MOE can be seen. Furthermore, in Figure 42, 

the Pareto plot shows us that even if those variables are excluded, more than 90% of the 

model variation can be captured.  

 

 
Figure 42.   OPSIT 2: Pareto Plot for the Screening Design Model 

After setting the excluded variables to their lowest values, a second set of 46 

experiments with the remaining six variables was conducted to develop the RSM. Figure 

43 presents the prediction profiler of that model, while the statistics and results are 

presented in Appendix B. In this plot, the high impact of the number of SAM and SAM 

range over the MOE can be easily identified, while gun range has the lowest impact.  
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Figure 43.   OPSIT 2: RSM Prediction Profiler 

The trade-off space between SAM range and the number of SAMs over this 

particular OPSIT are further investigated, since they constitute important design 

decisions. To do so, the other variables are fixed to a desired level, in this case, an 

intermediate level. Then, some constraints were added to the different OPSIT MOPs and 

the MOE. The resulting white space is our design space left to fulfill the requirements. 

In the example below, there is a trade off region for SAM range (between about 

30 and 45 km) and for number of SAMs (between 13 and 16) that fulfills the 

requirements. 
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Figure 44.   OPSIT 2: A Contour Profiler for Trade-Off Between Number of SAM and SAM 

Range 

E. ANALYSIS OPSIT 3 

Since the number of factors is just four for this OPSIT, it is possible to run a RSM 

model without first running a screening design. Furthermore, this particular OPSIT 

includes a single metric (PES Survivability), which becomes the MOE. Thus, a central 

composite design was selected, (see Appendix B) with the correspondent response for  
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each simulation experiment. Figure 45 presents the prediction profiler, where the relative 

impact of the variables in the MOE can be compared, while Figure 46 adds the 

interactions’ effect on the MOE. 

 

 
Figure 45.   OPSIT 3: RSM Prediction Profiler 

 
Figure 46.   OPSIT 3: Pareto Plot for the RSM 

By setting two variables (in this example, diameter and height of the sonar array) 

that could be constraints given to the designers of the combat system and selecting a limit 

for the MOE, the design space for the remaining factors (i.e., sonar frequency and 
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transmission power) can be appreciated. In this way, the process helps ensure that all the 

design decisions are considered for the combat system effectiveness. 

 

 
Figure 47.   OPSIT 3: A Contour Profiler for Trade-Off Between Sonar Transmission Power 

and Frequency 

F. ANALYSIS OPSIT 4 

The model of this OPSIT (i.e., surface warfare) depends on 11 variables. The 

results of the screening design model are presented in Figure 48. The OPSIT MOE is the 

weighted sum of three MOPs (i.e., M1: Mean PES received missile hits; M2:  Mean Red 
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surface combatants killed; M3: Mean Red LSTs killed), where as in previous OPSITs, all 

the metrics have received the same weighting, as seen in Equation 14: 

1 2 3* 1 * 2 * 3MOE M M Mω ω ω= + +   where 1 (14)
3iω =  

 
Figure 48.   OPSIT 4: Initial Screening Prediction Profiler 

In the profiler, the effect that the number of SSMs and the inclusion of decoys 

have on the response can be identified. However, unlike the screening design obtained in 

OPSITs 1 and 2, where the important factors from the model perspective were easily 

determined with the Pareto plot, in this particular case there are no factors that could be 

excluded while still keeping 85–90% or more of the model explanation. This is illustrated 

in Figure 49. But in order to proceed to a higher order model, it was necessary to reduce 

the variables to a maximum of eight, given the constraints of the software used. This line 

of thought was followed: 

Since SSM range seems to have relatively little influence in the response, and 

since a medium level of this variable is still higher than the radar-horizon detection range, 

this variable was set to medium level (i.e., 135 km). 

SAM speed seems to have little effect as well, so it was set to the medium level 

(i.e., 680 m/s). 
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Given that the high effect of decoys in the output is clear, a design decision 

should be made at this point to keep the decoy system. This decision will reduce the 

number of variables for the RSM. 

 

 
Figure 49.   OPSIT 4: Pareto Plot for the Screening Design Model 

With those design decisions, the number of variables to study with the RSM was 

reduced to eight. A central composite design (presented in Appendix B) was developed 

with those variables, with 2 center points, for a total of 82 experiments. The resulting 

RSM model profiler is shown in Figure 50. From that profiler, the result is that neither 

the highest power nor the highest antenna diameter are needed for the highest possible 

MOE, but a high number of at least medium range SSMs (i.e., 25.5 km) is necessary. 
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Figure 50.   OPSIT 4: RSM Prediction Profiler 

With the contour profiler help in Figure 51, an example situation of trade-off analysis has 

been set up, where radar parameters (i.e., power, antenna diameter, and frequency) and 

SAM range were set up to intermediate levels, while Close In Weapon System (CIWS) 

were excluded (i.e., no CIWS in the combat system configuration), and SSM speed was 

set to its higher level. With the constraints implemented, the design space between 

number of SSMs and SAMs can be realized. The design space is the small white stripe at 

top of figure 51. As can be seen there is no range to select from for the number of SSMs, 

but any selection of any number of SAMs satisfies the constraints.  

 



 75 

 

 
Figure 51.   OPSIT 4: A Contour Profiler for Trade-Off Between Number of SSM and 

Number of SAM 
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G. CALCULATING THE OMOE 

The OMOE is the weighted sum of individual MOEs. In this particular situation 

all MOEs have been given the same weight. That is: 

1 1 2 2 3 3 4 4* * * *OMOE MOE MOE MOE MOEω ω ω ω= + + +  where 1 (15)
4iω =  

Since the statistical models for all the OPSITs are now available, the OMOE can 

be optimized by manually extracting the MOE equation in each RSM and setting up a 

formula that combined the MOEs into the OMOE. However, while this process would be 

simple in nature, it would also be very tedious and outside the scope of the thesis, given 

the large number of terms involved. 

Instead, it was decided to generate different alternative combat system 

configurations and assess them using the statistical models and then calculate the OMOE. 

Five combat system configurations with their respective OMOE are shown in Table 23. 
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Table 23.   Different Combat System Configurations with OMOE Calculated from Individual 
MOE Models 

Config1 Config2 Config3 Config4 Config5
Sonar Frequency (kHz) 5200 5200 5200 8600 5200

Power (kW) 60 48 48 60 90
Diameter (m) 0.85 0.85 0.85 0.85 0.85
High (m) 1.22 1 1.22 1.22 1

Torpedoes Number 4 4 4 4 4
Speed (kt) 28 45 28 45 35

Radar Antenna Diameter (m) 2 2 3 3 3.5
Power (kW) 180 160 180 150 90
Frequency (GHz) 9.5 5.2 2.5 2.5 9.5

SAMs Number 12 12 12 18 18
Speed (m/s) 680 680 680 680 680
Max Range (km) 40 40 40 30 30

Gun Max Range (km) 12 16 16 12 16
Proj Speed (m/s) 880 925 925 880 925
Fire rate (proj/min) 80 85 85 80 85

SSMs Number 8 12 8 12 12
Speed (m/s) 240 240 306 306 299
Max Range (km) 135 135 135 135 135

Other CWIS Yes No Yes No Yes
Decoys Yes Yes Yes Yes Yes
OMOE 0.590 0.608 0.574 0.623 0.665

Variables Combat System Configurations

 
As was done with those five configurations, any number of alternative combat system 

configurations could be assessed in a short time, without having to run the ExtendSim® 

software for each candidate configuration. In this example, configuration 5 has the 

highest OMOE. 

H. SIMULATION COMMENTS 

1. Variability in the Data 

The maximum number of replications in each simulation was selected based on a 

trade-off between the acceptable simulation time and variations of the MOE between 

simultaneous runs. As shown in the next table, for OPSIT 1, each experiment took about 

two hours, which makes it very costly to increase the number of replications beyond 
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1000. To show the variability in the measured MOE for each OPSIT, one experimental 

point was selected for each RSM design, and five independent runs were made. Based on 

that data, statistics of the MOEs were determined at a 95% confidence interval and are 

presented in Table 25. 

 

Table 24.   Description of Selected Number of Replications per OPSIT and Example of the 
Resultant Variability in the MOEs. 

 Number of 
Replications 

Average Time 
to Run Each 
Experiment 

Experiment 
Number 

MOE 

OPSIT 1 1000 2 hours 6 0.57125, 0.56731, 0.57508, 
0.56728, 0.57000 

OPSIT 2 1000 3 minutes 10 0.61692, 0.60717, 0.60350, 
0.60808, 0.60942  

OPSIT 3 5000 16 minutes 17 0.98840, 0.98600, 0.99500, 
0.98900, 0.98620 

OPSIT 4 1000 15 minutes 25 0.52575, 0.51942, 0.51478, 
0.52296, 0.51429 

As can be seen in Tables 24 and 25, the range of variation in the MOEs is 

relatively small. This variability has been incorporated into the design by including two 

center points in the RSM designs. 

 

Table 25.   Statistics Describing the MOE for Selected Design Points in each OPSIT 

Statistics OPSIT1 OPSIT2 OPSIT3 OPSIT4

Mean 0.5701833 0.6090167 0.98892 0.519437
Standard Error 0.0014475 0.0022056 0.0016305 0.002241
Median 0.57 0.6080833 0.9884 0.519415
Standard Deviation 0.0032367 0.004932 0.0036458 0.00501
Sample Variance 1.048E-05 2.432E-05 1.329E-05 2.51E-05
Kurtosis 0.1732582 2.2119757 2.5702884 -2.22159
Skewness 0.8662253 1.1047034 1.5441775 0.190249
Range 0.0078056 0.0134167 0.009 0.011458
Minimum 0.5672778 0.6035 0.986 0.514291
Maximum 0.5750833 0.6169167 0.995 0.525749
Sum 2.8509167 3.0450833 4.9446 2.597187
Confidence Level(95.0%) 0.0040189 0.0061238 0.0045269 0.006221  
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2. Aspects to Improve in the ExtendSim® Models 

Even though a great effort has been made to represent all of the physical 

phenomena taking place in the OPSITs, there are some things to do in future work to 

improve the models. They are as follows: 

• Incorporate different configurations of unmanned vehicles in the functions 

performed by the combat system, primarily in the sensing functions, to 

assess their effect in the OMOE. 

• Remove assumptions related to neglecting reception and transmission 

losses, as well as atmospheric attenuation, in the radar detection model.   

• Model the different variables in the integration of weapons and sensors, 

with the fire control system. 

• Incorporate helicopter use in the OPSIT models, where appropriate. 

• Incorporate tracking radars, thermo-optical sensors, and ECM and ESM 

effect in models. 

• Develop cost models for all the variables and incorporate them in order to 

make possible trades-off between effectiveness and cost. 

• Develop weight and power models based on the variables and use them as 

constraints in the optimization process. 

• Incorporate options for multiple radars and sonar, as well as different 

operational modes in each sensor.  

• Model the interaction of more than one PES ship, or a PES ship with 

another friendly unit developing the same mission. 
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V. RISK AND COST CONSIDERATIONS 

A. RISK MANAGEMENT 

1. Definition of Risk and Risk Management 

Risk is defined by [34] as “a measure of the probability and consequence of not 

achieving a defined project goal” and risk management as “the act or practice of dealing 

with risk.”   

Risk is broadly accepted as a consequence of uncertainty during the life cycle of 

any system or project. Uncertainty comes from the unknown political and operational 

environment, threats, changes in technology, availability of resources, and other possible 

variables. While uncertainty cannot be eliminated, it can be reduced by “clarifying the 

probability of occurrence of the risk, understanding the consequences or alternatives if 

the risk event happens, and determining what drives the risks, i.e., the factors that 

influence its magnitude or likelihood of occurrence” [35]. 

The idea of this section is to look toward incorporating risk considerations within 

the conceptual design of the PES combat system, to identify sources of risk, and find 

ways to manage it. 

2. Classification of Risks 

Risks are classified by [36] in five categories: 1) technical risk, which includes the 

identification of the key performance parameters (KPP) and their correct specification in 

the contract, changes in technology, design issues, and production issues; 2) schedule 

risk, which represents the risk of failure to meet the schedule; 3) cost risk, the risk of 

failure to meet cost goals; 4) market risk, related to the availability of the goods needed to 

produce the system; and 5) other risks, which include excessive personnel turnover and 

data inaccuracy.   

3. Risk Management Process 

The authors of [35] present a five step model, which they assert has mitigated 

losses in many defense communication equipment and manufacturing projects. The five 
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steps, presented in Figure 52 are as follows: 1) identify risks; 2) analyze risks; 3) 

prioritize and map risks; 4) resolve risks; and 5) monitor risks.  

The goal of the first step is to generate a broad list of risks, with an associated 

time component (i.e., when the risk event could take place) and impact assigned to each. 

In the second step, each risk is analyzed to identify the drivers for the risk, and to 

estimate the probability that the risk event will take place. As for the impact of the risk 

event, the aforementioned estimates are used to predict the expected loss (i.e., the mean 

loss associated with the risk) as seen in Equation 15:  

Probability of Risk Event (Pe) x Total loss (Lt) = Expected loss (Le)  (15) 

 

 
Figure 52.   Risk Management Process. From [35]. 

In the third step, the expected loss is used to compare and prioritize risks, which 

allows planners to proactively manage a smaller selection risks. The purpose of this 
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decision is to concentrate the resources on the risks that could cause more serious damage 

to the project. The fourth step develops an action plan for each risk selected in Step 3. 

Response options could include a focus on the risk event itself (e.g., transfer and 

redundancy) or a focus in the risk drivers (e.g., avoidance and mitigation).  The last step 

is to monitor project risks. This ensures the action plans make the desired progress. 

Changes that may affect the action plan or generate new risks to manage are also 

monitored.  

4. PES Combat System Risks and Opportunities Discussion 

One of the first risks that should be addressed in any the ship building project that 

of cost overruns.  This risk is common to most projects of this kind. The U.S. Navy’s 

shipbuilding illustrates this point. As indicated by [37], cost overrun was commonplace 

for the last ten first-in-class surface ships built. Of those ships, only two had overruns less 

than 20%. The rest of the overruns ranged from 40% to more than 100%. The solution 

requires greater effort in cost estimation (which necessitates a great deal of historical cost 

data up front). The solution also requires a better effort at the beginning of the project to 

establish an agreement among all stakeholders and decision makers in the scope that 

defines the expected capabilities. This will prevent changes in the scope that might later 

add risks to the project.  

Technological maturity is another important consideration. The latest technology 

available is always desired, but the risk of incorporating technology that is not proven or 

ready when the design begins should be considered. To reduce the impact if the new 

technology is not ready when expected, some alternatives should be incorporated into the 

system design.    

Complexity is another important issue that not only increases risk, but also cost. 

According to Dick Coleman2

                                                 
2 U.S. Navy retired captain, former director of Naval Center for Cost Analysis.  He is now director of 

the Northrop Grumman Cost/Price Analysis Center of Excellence. 

 after a conference to the summer 2009 Cost Estimation 
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NPS class, the size of the ship is the main driver of the cost escalation in ship acquisition. 

“The displacement of ships is growing an average of 3% every year inside each class,” he 

said.  

This increase in size (due to an increase in complexity) has definitely reduced the 

U.S. Navy’s ability to buy more ships because of the increase in unitary ship cost. Table 

26 shows some ship class representatives and their increase in displacement. This 

phenomenon is not exclusive to the U.S. Navy. As can be seen in Table 27 U.K. ships 

have experienced this kind of grouth, with an average of more than 55% for the types of 

ship analyzed. 

 

Table 26.   Representative Ship Class Displacements. From [38]. 

 
 

Table 27.   Generational Growth in U.K. Platform Size. From [39]. 
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In fact, [40] states: “Our statistical analysis found that light ship weight (LSW)2 

and power density (i.e., the ratio of power generation capacity to LSW) correlated most 

strongly with ship costs.” But it is not the cost of steel or generators that make ships more 

expensive, but rather the systems they carry. Therefore, the driver that is behind the size 

of ship (displacement) and power density is the complexity of systems that makes today’s 

ships more capable than their former versions.  To accomplish more missions, more 

systems have been added to ships, and these ships have been designed bigger to support 

those loads. As an example of this trend, Figure 53 shows the increase of weapons system 

complexity for U.S. surface combatants from 1960–2000. 

 

 
Figure 53.   An Example of Increasing Complexity of Weapons Systems for Surface 

Combatants. From [40]. 

Figure 54 shows the effect of complexity for additional capabilities for FFG-7, which was 

constructed between 1973 and 1984. Since the cost was divided between basic 

shipbuilder costs, electronics costs, and ordnance costs changes, it can be seen that while 

the basic and ordnance costs remained relatively stable in the time period, the cost of 

electronics increased more than five times as a result of expanding the roles of the ship 

class.  
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Figure 54.   Components Escalation for the FFG-7 Class. From [40]. 

To avoid potential overruns and cost escalation risk, mission focused ships should 

be produced, rather than multi-mission vessels. In other words, smaller ships, with fewer 

capabilities need to be made and have a greater number ships made within the same 

budget. With more ships, the fleet can achieve an overall higher level of efficiency. More 

specialized or mission focused ships are less complex. This reduces the integration effort 

and the overall technological risk of the project. Additionally, the cost of the ship is cut 

down, which allows for an increase in the size of the fleet. Smaller vessels have many 

advantages over the bigger ones. In addition to the reduced cost of acquisition, it is easier 

to reduce signatures, improve maneuverability, and as they are smaller and require less 

manning, it reduces the cost of operation, support and maintenance.  

There is also within this project the opportunity to make indigenous developments 

as part of the combat system project. As an example, low cost missiles are available in 

the international market. These could be upgraded at relatively low cost. Even the cost of 

building the missiles, if the appropriate knowledge is acquired, could be relatively low. 

New Zealand engineer Bruce Simpson tried to prove this, as documented by [41]. The 

attempted to build, by himself, a cruise missile for under $5.000, but was stopped by 

local authorities. The importance of being able to produce missiles is evidenced in 

Chapter IV. The number of missiles is one of the variables with a higher impact on 
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mission effectiveness, in both surface warfare and anti-air warfare scenarios. Thus, even 

if this decision carries a high risk, increasing the number of missiles within the same 

budget and the resulting gain in mission effectiveness makes it worth the risk. 

5. Technical Risk Evaluation 

The uncertainty associated with not achieving the technical specifications, over 

the respective MOEs, could be analyzed with the simulation feature of JMP®.  As a case 

study, OPSIT 3 is analyzed with configuration No. 3 (see Table 23).  The uncertainty 

about the final frequency is represented with a normal distribution, with the mean equal 

the design frequency (i.e., 5.2 kHz) and standard deviation of 500 Hz. In the same way, 

the transmission power is represented with a distribution, with mean value equal to the 

design power (i.e., 48 kW) and standard deviation of 2 kW, as represented in Figure 55. 

The other factors are assumed to be fixed values, since the designers have greater control 

over them. The effect of that uncertainty is shown in the histogram in Figure 56, where 

the MOE ranges from nearly 0.8 to 1. 

 
Figure 55.   Using JMP® Simulator to Assess Technical Risk 
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Figure 56.   Example of the Determination of CDF for the MOE 

When the variables are considered fixed input parameters, the MOE for this 

configuration is calculated to be equal to 0.942. With random parameters that represent 

the uncertainty in achieving the design power and frequency of the sonar, the expected 

MOE is 0.9411, but it can be as low as 0.7996. The Cumulative Distribution Function 

(CDF) plot shows that there is a risk of 10% of achieving less than 0.9 in the MOE 

(assuming that is the requirement for that OPSIT). This can be deduced from the CDF in 

Figure 56. This value is then a quantitative input to the risk management process.  

The same analysis as outlined above can be performed on other variables that 

have uncertainty in their final value, to assess the risk of not achieving the requirements. 

B. INCORPORATING COST AND OTHER CONSTRAINTS AS MODEL 
RESPONSES 

The MOE is not the only constraint designers and decision makers face when 

choosing a combat system configuration. It would be also helpful in early stages of the 

project to be able to constraint the design to the available payload weight, volume, power 

consumption, and cost. Having enough data about those parameters, a regression analysis 

can be generated and develop models allowing the prediction of their value for the 

complete design space. 
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As an illustration related to cost: from the different techniques for cost estimation 

(analogy, parametric, engineering build-up), parametric costing or cost estimating 

relationships (CER) are useful for the conceptual and design phases, as presented in 

Table 5.1 of [42].  

This technique relies in historical data, and the identification of the variables that 

drive the cost. Then, regression analysis is performed with the data, to express the cost as 

a result of those variables.  

The accurate cost data of weapons and sensors is limited to what is contained in 

open source literature. In this case study, from the five data points available (Table 28), it 

is possible to develop a cost estimation relationship (CER) to predict the cost of sonar. 

 

Table 28.   Available Data for CER of Sonar Configurations. 

Sonar System Frequency     
(kHz)

Power (kW) High Diameter Cost (U$) 
Million

Year Cost(U$2010) 
Million

SQS-56 7.50 36.00 0.97 1.21 4.5 1988 7.2054
Type 2050 (UK) 6.00 44.00 1.58 1.82 5.0 1990 7.3875
sqs-53b 3.00 190.00 1.60 4.80 6.3 1987 10.38996
Wesmar SS 395 100.00 1.00 0.60 0.20 0.0016 2010 0.00164
SX 90 25.00 3.00 0.44 0.38 0.2290 2010 0.229  

 

From the several models used (linear, exponential, logarithmic) with one, two or 

three variables, using the least square method, the best model statistically was a 

logarithmic model, using power as the only input variable. The model is seen in Equation 

16: 

Cost (U$2010 Million) = 2.1539 x Ln(Power[kW]) – 0.8647  (16) 

In fact, Figure 57 shows a good fit between the model and the available cost data. 

With this CER, one can predict the cost of the different sonar alternatives studied in the 

RSM of OPSIT 3 and introduce it as a response in JMP®.  
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Figure 57.   CER for Sonar Cost 

Following the same case study analyzed in the previous section (i.e., OPSIT 3, 

configuration No. 3), a cost limit of 6.5 million has been added to the contour profiler, 

presented in Figure 58.  
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Figure 58.   Contour Profiler for MOE and Cost of the Sonar System: Transmission Power vs. 

Diameter of the Array  

Thus, from the contour profiler, it can be easily identified that the initial power 

considered in the combat system configuration (i.e., 48 kW) is outside the feasible region.  

However, there are feasible options (the white area in the plot) below 34 kW that fulfill 

both the cost and performance constraints, if the diameter of the array is increased. 

As illustrated with cost, similar procedures could be developed, if the average 

power consumption, weight, and volume data is available, to analyze those factors in 

each model and predict those values for all possible combinations of combat systems. In 
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such a manner, power consumption, weight, and volume could be limited based on naval 

architects’ input and in this way arrive at a design that satisfies all the constraints. 

The sum of these techniques provides the quantitative basis for an optimal design. 

For decision makers, it provides a way to assess the performance of candidate combat 

system configurations and to better arrive at a decision that satisfies all the constraints. 



 93 

VI. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY 

This work has set up the basis for the conceptual design of the PES ship’s combat 

system, in a way that considers the impact of the system components’ variables on the 

overall warfighting effectiveness of the ship. The use of this methodology allowed for 

identification of the highest possible effectiveness for the mission of the ship within the 

given constraints of cost, risk, and platform limitations.  

B. CONCLUSIONS 

The separation of the combat system from the platform simplifies the problem of 

surface combatant ship design. Once a combat system with the highest overall 

effectiveness is selected, the payloads are identified and the platform is designed around 

the combat system needs and the other top level requirements.  

The DRM is useful for characterizing the environment, threat, and general 

condition in which the intended combat system will perform, and in this way it provided 

the basis for modeling and simulation. 

Combat systems design requires taking into account several approaches and 

determining the most effective solution.  However, real systems prototyping, when 

related with complex and/or large systems, is usually a prohibitively expensive way of 

analyzing the alternative solutions. Moreover, real life testing of different options can be 

undesirable, given the amount of resources required for those activities.  As such, 

modeling and simulation is a very effective way to research and assess different solutions 

to fulfill the needs of the design.  

With the use of DOE and RSM techniques within the SAS JMP® software, the 

analysis of the data obtained from simulations is simplified, while the total amount of 

simulation time is reduced. This allows for identification of the important factors for each 
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MOE, and for the identification of feasibility regions for the combat system. This allows 

resources, power, weight, and volume to be focused in a way that optimizes the ship 

design. The contour plot display of the varying characteristics of the combat system to 

decision makers allows them to see the results of their varying design variables on MOE. 

C. RECOMMENDATIONS 

Based on the finding of this work, the following steps are suggested as a way of 

expanding the options for the design, simplifying the feasibility assessment and decision 

making process, and improving the accuracy of the modeling: 

• Improve the ExtendSim® models incorporating within the simulation the 

possibility of unmanned systems, helicopters, interaction with friendly 

units, and other sensors as described in section H.2 of Chapter IV.  

• Develop cost models for all the systems present in the design in order to 

allow trades-off between cost and overall effectiveness. 

• Develop weight and power models based on the variables, to use as 

constraints in the optimization process. 

• Develop new OPSITs that cover other important operational tasks with 

which the Colombian Navy is concerned, as related to detection and 

interdiction of Go-fast boats and semisubmersibles used for the traffic of 

narcotics.  

• Employ the simulation models to study the comparative effectiveness of 

having specialized ships for each mission versus multi mission vessels. 

• Combine the combat system models to total ship design synthesis models 

to determine overall ship characteristics for decision making. 
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APPENDIX A:  CHARACTERIZATION OF SENSORS AND COMBAT SYSTEMS 

Table 29.   Selected Surface Combatants 

Class Countries Displacement Radar Sonar Electronic 
Warfare

Decoys Guns CWIS SAM SSM Torpedoes

Adelaide Australia 4200 Ton SPS-49 
A(V)1; SPS-
55 

Spherion 
UMS 4131; 
TMS 5424; 
Albatros 
(TMS 
4350) 

Elbit EA-
2118 
jammer. 
Rafael C-
Pearl

SRBOC Mk 
36; 4 Nulka 
quad
2  chaff 
rocket 
launchers

1 Oto 
Melara 
76/62

1 
GE/GDC 
20 mm 
Mk 15 
Vulcan 
Phalanx 

GDC 
Pomona 
SM-2 
Block IIIA 

8 Harpoon 
Block 2

2x3 324 
mm Mk 32; 
Eurotorp 
MU 90

Anzac 
(Meko 
200)

New 
Zeland, 
Australia

3700 Ton SPS-
49(V)8; 
9LV 453 TIR 

Thomson 
Sintra 
Spherion 
B Mod 5

(ESM) 
DASA 
Maigret; 
Racal 
Centaur

2 Loral 
Hycor Mk 
36 Mod 1; 
SLQ-25A 
torpedo 
decoy 
system

1 - 5 in/54 
Mk 45 
Mod 2

1  Vulcan 
Phalanx 
6 
barrelle
d Mk 15 
Block 1

8 Sea 
Sparrow 
RIM-7P

2x4 
Harpoon

6 Mk 46 
Mod 2

Barbaros 
(Meko 
200)

Turkey 3100 Ton AWS 9; 
AWS 6 
Dolphin

SQS-56 Racal 
Cutlass, 
Racal 
Scorpion

Mk 36 1 - 5 in/54 3 Sea 
Zenith

8 Sea 
Sparrow 
PDMS

84 
Harpoon

6 Mk 46 
Mod 5

Frigates
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Class Countries Displacement Radar Sonar Electronic 
Warfare

Decoys Guns CWIS SAM SSM Torpedoes

Formidabl
e

Singapore 3100 Ton Herakles 3-
D; 2 
Scanter 
2001 

EDO 980 
ALOFTS 
VDS

C-Pearl-M 3 NGDS 8-
barrelled 
chaff; 
torpedo 
decoys 

1 Oto 
Melara 76 
mm/62 
Super 
rapid; 2 20 
mm

No 32 
Eurosam 
SAAM

8 Harpoon 6 A 244/S 
Mod 3

Freedom 
(LCS)

US 3000 Ton TRS-3D AN/SQR-
20 

ST WBR-
2000 ESM

2 
SKWS/SRB
OC

1 - 57 
mm/70 
Mk 2

No 21 RIM-
116

45 NLOS-LS No

Fremm France, 
Italy, 
Morocco

4500 Ton Herakles 3-
D

Thales TUS 
4110CL

ARBR 21 2 EADS 
NGDS 12-
barrelled 
chaff; 
Antitorped
o decoys.

1 Oto 
Melara 76 
mm/62 
Super 
Rapid

Unknow
n

16 (2 
octuple) 
cell 
Sylver 
A43 VLS 
for MBDA 
A  15

8 MBDA 
MM 40 
Exocet 
Block III

2x3 324 
mm (2 B 
515) 
tubes; 
Eurotorp 
Mu-90

Halifax Canada 4700 Ton SPS-
49(V)5;  HC 
150

SQS-510; 
SQR-501

SLQ-501; 
SRD 502;  
AN/ULR 
501; SLQ-
503 

4 Shield 
Mk 2 
launchers; 
SLQ-25; 
towed 
acoustic 
decoy

1 Bofors 
57 mm/70 
Mk 2

1 20 mm 
Vulcan 
Phalanx 
Mk 15 
Mod 1 

16 RIM-
162

8 Harpoon 
Block 1C (2 
quad)

4 Mk 46 
Mod 5

Independ
ence (LCS)

US 2790 Ton Sea Giraffe VDS ES-3601 
ESM 
system.

4 SRBOC 6-
barrelled

1 - 57 
mm/70 
Mk 2 

No 11 RIM-
116B

45 NLOS-LS No

 



 

 97 

Class Countries Displacement Radar Sonar Electronic 
Warfare

Decoys Guns CWIS SAM SSM Torpedoes

Karel 
Doorman

Netherlan
ds, 
Belgium

2800 Ton SMART  
3D; LW08; 
Scout; 2  
STIR 

Signaal 
PHS-36; 
Anaconda 
DSBV 61

APECS II 
(includes 
AR 700 
ESM)

2 SRBOC 6-
Mk 36 quad 
launchers; 
SLQ-25 
Nixie

Oto 
Melara 76 
mm/62 
compact 
Mk 100; 2 
LIW DPG 
35 mm

1 SGE-30 
Goalkee
per 30 
mm

16 RIM 7P 8 Harpoon 
Block 1C (2 
quad) 

2 Mk 46 
Mod 5

Lekiu Malaysia 1845 Ton DA08; Sea 
Giraffe 
150HC

Sintra 
Spherion

Telefunke
n; Mentor

2 Super 
Barricade 
12-
barrelled; 
Sea Siren 
torpedo 
decoy.

1 Bofors 
57 mm/70 
SAK Mk 2; 
2 MSI 30 
mm/75 DS 
30B 

No 16 
Seawolf

8 MM 40 
Exocet 
Block II 

6 Sting Ray

Neustrash
imy

Russia 3450 Ton Top Plate  
3D; Cross 
Dome 

Ox Yoke 
and Whale 
Tongue

2 Foot 
Ball; 2 
Half Hat; 4 
Half Cup 
laser 
intercept

8 PK 10 and 
2 PK 16 
chaff 
launchers

1 - 3.9 
in/59 A 
190E

2 CADS-
N-1

32 SA-N-
9

16 SS-N-25 6 SS-N-
15/16 
missiles 
with Type 
40 
torpedoes

Oliver 
Hazard 
Perry

US 4100 Ton SPS-49(V); 
SPS-55

SQQ 
89(V)2 
(Raytheon 
SQS 56 
and Gould 
SQR 19)

SLQ-
32(V)2

2 SRBOC 6-
barrelled 
Mk 36 ; Mk 
53 Nulka 
decoys.
T-Mk 6 
Fanfare/SL
Q-25 Nixie

1 Oto 
Melara 76 
mm/62 
Mk 75

1 20 
mm/76 
Mk 15 
Block 1B 
Vulcan 
Phalanx

Removed Removed 6 Mk 46 
Mod 5
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Class Countries Displacement Radar Sonar Electronic 
Warfare

Decoys Guns CWIS SAM SSM Torpedoes

Shivalik India 4600 Ton Revathi; 
Top Plate 
(Fregat-
M2EM) 

Bharat 
HUMSA

Bharat 
Ajanta; 
ASOR (TK-
25E-5)

2 PK 2 2 Oto 
Melara 76 
mm/62 
Super 
Rapid

2 - 30 
mm AK 
630

6 SA-N-7 
Gadfly; 8 
Barak 1

8 SS-N-27 6 ILAS 3 
launcher

Sword (F-
22P)

Pakistan 2500 Ton Type 517 
Knife Rest; 
Type 363 
Seagull S

DSQS-
23BZ

N/A N/A 1 - 76 mm 
AK 176M 

2 - 30 
mm 
Type 
730B

 8 SA-N-4 8 C-802 6 ET-52C

Type 054A China 3500 Ton Top Plate 
(Fregat 
MAE-3) ; 
Type 364 
Seagull C

MGK-335 Type 922-
1; HZ-100 
ECM & 
ELINT

2 - 24 
barrelled 
launchers

1 - 76 mm 2-30 mm 
Type 
730A (7 
barrels)

32 HHQ-
16

8 C-802 (YJ-
83/CSS-N-
8 Saccade) 

6 Yu-2/6/7

Valour 
(Meko A-
200 SAN)

South 
Africa

3590 Ton MRR 3D; 2  
RTS 6400

Thomson 
Marconi 
4132 
Kingklip

SME 
100/200 
ESM & 
ELINT

2 Super 
Barricade 
chaff 
launchers

1 
Otobreda 
76 mm/62 
compact; 
2 LIW DPG 
35 mm

2 
Oerlikon 
20 mm 
Mk 1

Denel 
Umkhont
o 16 cell 
VLS 

8 Exocet 
MM 40 
Block 2 

4 torpedo 
tubes
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Class Countries Displacement Radar Sonar Electronic 
Warfare

Decoys Guns CWIS SAM SSM Torpedoes

Abu Dhabi 
(Comanda
nte)

United 
Arab 
Emirates

1650 Ton Kronos 3D; 
SIR-M

CAPTAS 
Nano

SLQ-747 Chaft 
launchers

1 
Otobreda 
76 mm/62 
Super 
Rapid; 2 
Oto 
Melara 
Marlin 30 
mm

No No 4 MBDA 
Exocet

N/A

Al 
Shamikh

Oman 2700 Ton SMART-S 
Mk 2

N/A Vigile 400 Rheinmeta
ll MASS

Oto 
Melara 
76/62 
Super 
Rapid 

2 DS 30M 
Mk 2 30 
mm

No 12 MM40 
Block 3 

N/A

Baynunah United 
Arab 
Emirates

830 Ton Sea 
Giraffe; 
Scanter 
2001 

L-3 ELAC 
Nautik 
NDS 3070 
mine 
avoidance 
sonar

SLR 736; 
DRS Z S 
405

2 
Rheinmeta
ll MASS-2L 
launchers 

1 OTO 
Melara 76 
mm/62 
Super 
Rapid;  
Rheinmet
all MLG 27 
mm 

No 8 RIM-
162; 21  
RIM-116B

8 MBDA 
MM 40 
Block III 

No

Braunsch
weig K130

Germany 1840 Ton TRS-3D No EADS UL 
5000K

2 
Rheinmeta
ll MASS; 
decoy 
launchers

1 
Otobreda 
76 mm/62 
; 2 Mauser 
27 mm 

No 42 RIM-
116

4 Saab RBS-
15 Mk 3

No

Corvettes & OPVs
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Class Countries Displacement Radar Sonar Electronic 
Warfare

Decoys Guns CWIS SAM SSM Torpedoes

Kamorta India 2400 Ton Revathi 3-
D 

HUMSA-
NG 

BEL's 
Sanket 
system 

4 CSN-56 OTO 
Melara 76 
mm/62 

2 AK-
630M 

Barak 1 No 2x2 
improved 
DTA-53 
533 mm

Milgem Turkey 1500 Ton  SMART-S 
Mk2

 Sonar 
2170, Sea 
Sentor

N/A TBA; Ultra 
Sea Sentor

1-3 in (76 
mm)

No 21 RIM-
116 

8 
McDonnell 
Douglas 
Harpoon 

4-324 mm

Sa'ar 5 Israel 1075 Ton EL/M-
2218S; SPS-
55 

EDO Type 
796 Mod 1

Elisra NS 
9003; 
Tadiran 
NATACS; 2 
Rafael 
1010; 
Elisra NS 
9005

3 chaff and 
IR 
launchers; 
ATC-1 
towed 
torpedo 
decoy.

OTO 
Melara 76 
mm/62 
compact 

2 Sea 
Vulcan 
20 mm

64 Barak I 8 
McDonnell 
Douglas 
Harpoon (2 
quad) 

6 
Honeywell 
Mk 46

Visby Sweden 620 Ton Sea Giraffe 
AMB 3D; 
Scanter 
2001

Hydra 
Suite

Condor 
Systems 
CS 3701

MASS-
HIDD 

1 Bofors 
57 mm/70 
SAK Mk 3

No No 8 RBS 15 
Mk II 
(Batch 2) 

Type 45 
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Table 30.   Radar Systems Parameters  

 

Radar System Antenna 
Diameter (m)

Power        
(kW)

Central Frequency 
(GHz)

Bandwidth 
(kHz)

AW 9 (Type 996) N/A 80 3 N/A

Cross Dome (MR-52)

3 N/A 3 N/A

DA08 N/A 145 3.5 N/A
EADS TRS-3D 0.8 N/A 5 N/A
EL/M-2208 1.6 25 9.4 N/A
Herakles N/A N/A 3 N/A
Kronos 3D 1.41 N/A 6 N/A
LW08 N/A 150 1.5 N/A
MRR 3D N/A N/A 5 N/A
Revathi 2.4* N/A 3 N/A
Scanter 2001 0.8* 30 3.05 N/A

Scout
1.8 1 (20 

equivalent)
9 N/A

Sea Giraffe HC 150 N/A 60 5 N/A
Smart S Mk2 3.24 145 3.5 N/A

SPS-49
6.3 360 0.9 1.2 MHz & 12 

MHz

SPS-55
1.13* 130 9.5 1.2 MHz & 10 

MHz
STIR 1.8 220 9.5 N/A
Top Plate (Fregat MAE-3) 1.7 45 2.5 N/A
Top Plate (Fregat-M2EM) 3.78 90 2.5 N/A
Type 363 Seagull S 4.54 60 3 N/A
Type 364 Seagull C N/A N/A 5 N/A
Type 382 N/A N/A N/A N/A
Type 517 Knife Rest N/A 100 0.072 N/A

N/A:  (Information not available)
    *  :  (Estimates based on antenna gain or graphic information)  
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Table 31.   Sonar Systems Parameters  

Sonar System Array Type Frequency     
(kHz)

Power (kW) Length Diameter High

Spherion Mk 
III/UMS 4131 Spherical 5.5, 6.5, 7.5 N/A 1.16
SQS-56 Cylindrical 7.5 36 1.21 0.965
980 ALOFTS Linear 1 N/A 222.5
UMS 4110CL Cylindrical 4.5 96 (2x48) N/A N/A
SQS-510 Cylindrical 2.2 - 8.6 N/A 1.22 1.22
PHS-36 Cylindrical 5.5, 6.5, 7.5 N/A N/A N/A
Ox Yoke Cylindrical N/A N/A N/A N/A
HUMSA (MG-
345) Cylindrical 6.5, 7, 7.5 N/A N/A N/A
UMS 4132 
(Kingklip) Cylindrical 5.52 - 8 N/A 1.2 1.13
NDS 3070 Planar 30, 70 N/A 0.388 0.549

Type 796 Mod 1 Cylindrical 7 N/A N/A N/A
CAPTAS nano 
(UMS 4320) Cylindrical 0.9 - 2 N/A N/A N/A
SS-105 Circular 14 15 0.85*  

 

Table 32.   SSM Parameters  

Number Speed (m/s) Max Range (Km) RCS (m2)*
Flight 

Altitude (m)

Harpoon 4, 8, 12 240 124 0.08392 7 - 20
NLOS-LS 15,30,45 108 50 0.01939 N/A
MM-40 block 3 8 306 180 0.09335 8 - 30 
SS-N-25 4,8,12,16 299 130 0.14325 10 - 15
SS-N-27 4,8,12,17 238 220 0.2236 5
C-802 Saccade 8 ~476 120 0.1118 10 - 30
RBS-15 Mk 3 4,8,12 272 200 0.19685 N/A

*RCS estimated using Mie series solution for a perfect sphere [43] at the assumed Red Radar 
Frequency (3.5 GHz)  
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Table 33.   SAM Parameters  

Number Speed (m/s) Max Range (Km)

Barak 1 32, 64 680 12
GWS-26 16, 32 680 6
RIM-116 21, 42 680 20.4
RIM-162 11, 16, 22, 32 1360 45
RIM-7P 8, 16, 24, 32 850 16
SAAM (Aster 15) 8, 16, 21, 24, 32 1000 30
SA-N-4 8,16,32 N/A 15
SA-N-7 8,16,32 1020 30
SA-N-9 8,16,32 850 12
SM-2 24, 40, 44, 64 1020 240.8  

 

Table 34.   Gun Parameters  

GUN Max Range 
(Km)

Proj Speed 
(m/s)

Fire Rate 
(Proj/min)

A 190E (3.9in/59) 12 880 80

Mk 45 (5in/54) 12.39 807 20
Mk2 (57mm/70) 17 1035 220
Oto Melara 76/62 15.75 900 59
Oto Melara 76/62 
Compact

16 925 85

Oto Melara 76/62 
Super Rapid

16 925 120

 

 

Table 35.   Torpedo Parameters  

Torpedo Number Warhead 
(kg)

Batery Life 
(min)

Speed (kt) Range (km)

Eurotorp MU 90 3, 6 123* 25.7 29 23

Mk 46 3, 4, 6 44.45 7.9 45 11
A244/S Mod 3 3, 6 42 15.6 28 13.5
ET-52C 3,6 34 6.5 35 7
Sting Ray 3, 6 45 8.0 45 11.11

 * 32 kg TATB equivalent to 123 kg TNT
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APPENDIX B:  SUMMARY OF EXPERIMENTS 

Table 36.   Screening Design for OPSIT 1  

Sonar 
Frequency (Hz)

Tx Power 
(W)

Diameter 
Array (m)

High Array 
(m)

#Torpedoes Warhead 
(kg)

Torpedo 
speed (kt)

1 8600 15000 0.85 1.22 6 34 28
2 2200 15000 1.22 1.22 4 34 45
3 2200 15000 0.85 0.55 4 34 28
4 2200 96000 0.85 0.55 6 34 45
5 8600 96000 1.22 1.22 6 45 45
6 8600 96000 0.85 1.22 4 34 45
7 2200 96000 1.22 1.22 6 34 28
8 2200 96000 1.22 0.55 4 45 45
9 8600 15000 1.22 0.55 6 34 45

10 8600 96000 0.85 0.55 6 45 28
11 8600 15000 1.22 1.22 4 45 28
12 8600 96000 1.22 0.55 4 34 28
13 2200 15000 1.22 0.55 6 45 28
14 8600 15000 0.85 0.55 4 45 45
15 2200 96000 0.85 1.22 4 45 28
16 2200 15000 0.85 1.22 6 45 45  

 

Table 37.   Screening Responses for OPSIT 1  
Merchant 
Survivability

Pkill 
Submarine

PES 
Survivability

MOE

1 0.709417 0.014 0.368 0.36380567
2 0.705333 0.014 0.378 0.36577767
3 0.708833 0.005 0.362 0.358611
4 0.693333 0.011 0.383 0.36244433
5 0.739417 0.591 0.358 0.56280567
6 0.74825 0.599 0.344 0.56375
7 0.745583 0.669 0.301 0.571861
8 0.705917 0.017 0.401 0.374639
9 0.712917 0.013 0.349 0.35830567

10 0.71925 0.015 0.35 0.36141667
11 0.718583 0.014 0.336 0.35619433
12 0.714667 0.015 0.366 0.36522233
13 0.71075 0.004 0.339 0.35125
14 0.700583 0.004 0.374 0.35952767
15 0.74925 0.635 0.317 0.56708333
16 0.711583333 0.013 0.386 0.37019444  
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Figure 59.   Screening Model Statistics for OPSIT 1 
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Table 38.   RSM Design for OPSIT 1  

Sonar 
Frequency

Tx Power Array High Torpedo 
Speed

1 8600 15000 0.55 45
2 8600 96000 0.55 45
3 5400 15000 0.885 36.5
4 5400 96000 0.885 36.5
5 8600 15000 1.22 45
6 5400 55500 0.885 36.5
7 2200 15000 0.55 28
8 8600 96000 1.22 45
9 2200 55500 0.885 36.5

10 5400 55500 0.885 45
11 8600 96000 0.55 28
12 5400 55500 0.885 28
13 5400 55500 1.22 36.5
14 8600 55500 0.885 36.5
15 2200 96000 1.22 28
16 5400 55500 0.885 36.5
17 8600 96000 1.22 28
18 2200 15000 1.22 28
19 5400 55500 0.55 36.5
20 8600 15000 0.55 28
21 2200 96000 0.55 45
22 2200 15000 0.55 45
23 2200 96000 0.55 28
24 8600 15000 1.22 28
25 2200 15000 1.22 45
26 2200 96000 1.22 45  
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Table 39.   RSM Responses for OPSIT 1  

M1 Merchants 
Survivability

M2 Pkill 
Submarine

M3 PES 
Survivability

MOE

1 0.749166667 0.01 0.33 0.363056
2 0.6925 0.02 0.41 0.374167
3 0.739166667 0.03 0.31 0.359722
4 0.7425 0.64 0.38 0.5875
5 0.71 0.01 0.43 0.383333
6 0.7375 0.68 0.32 0.579167
7 0.736666667 0.02 0.37 0.375556
8 0.76 0.62 0.36 0.58
9 0.663333333 0 0.43 0.364444

10 0.785 0.64 0.34 0.588333
11 0.685 0.01 0.33 0.341667
12 0.716666667 0.6 0.36 0.558889
13 0.725 0.59 0.37 0.561667
14 0.725 0.02 0.4 0.381667
15 0.740833333 0.58 0.37 0.563611
16 0.723333333 0.61 0.32 0.551111
17 0.741666667 0.62 0.3 0.553889
18 0.679166667 0.01 0.39 0.359722
19 0.721666667 0.02 0.4 0.380556
20 0.679166667 0.01 0.42 0.369722
21 0.685 0.01 0.43 0.375
22 0.696666667 0 0.42 0.372222
23 0.706666667 0.01 0.3 0.338889
24 0.693333333 0.02 0.34 0.351111
25 0.6925 0.02 0.28 0.330833
26 0.763333333 0.6 0.34 0.567778  
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Figure 60.   RSM Statistics for OPSIT 1 
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Table 40.   Screening Design for OPSIT 2  

Antenna 
Diameter 

(m)

Radar Peak 
Power 
(kW)

Frequency 
(MHz)

#SAM SAM 
Speed 
(m/s)

SAM 
Range 
(km)

Gun 
Range 
(km)

Projectile 
Speed 
(m/s)

Fire Rate 
(Proj/min)

1 6.3 360 9.5 24 1360 45 16 1035 220
2 0.8 25 9.5 16 1360 6 12 1035 220
3 0.8 360 9.5 24 1360 45 12 807 20
4 0.8 360 9.5 8 680 6 16 1035 20
5 6.3 25 0.9 8 1360 45 12 807 220
6 6.3 360 9.5 8 680 6 12 807 220
7 0.8 25 9.5 16 680 45 16 807 220
8 0.8 25 0.9 8 1360 45 16 1035 20
9 6.3 25 9.5 16 680 45 12 1035 20

10 6.3 25 0.9 24 680 6 16 1035 220
11 6.3 360 0.9 16 680 45 16 807 20
12 3.55 192.5 5.2 8 1020 25.5 14 921 120
13 6.3 360 0.9 16 1360 6 12 1035 20
14 0.8 360 0.9 8 680 45 12 1035 220
15 0.8 25 0.9 24 680 6 12 807 20
16 0.8 25 0.9 24 680 6 12 807 20
17 6.3 25 9.5 8 1360 6 16 807 20
18 6.3 360 9.5 24 1360 45 16 1035 220
19 0.8 360 0.9 16 1360 6 16 807 220
20 3.55 192.5 5.2 16 1020 25.5 14 921 120  
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Table 41.   Screening Responses for OPSIT 2  
  Pier 

Survivability 
Aircraft 
Killed 

PES 
Survivability 

MOE 

1 0.917 1.906 0.763 0.718833333 
2 0.775 1.737 0 0.403083333 
3 0.912 1.9 0.893 0.76 
4 0.451 1.274 0.308 0.359166667 
5 0.457 1.265 0.28 0.351083333 
6 0.456 1.281 0.19 0.322083333 
7 0.776 1.735 0.579 0.59625 
8 0.487 1.333 0.266 0.362083333 
9 0.765 1.727 0.582 0.592916667 

10 0.903 1.894 0.058 0.478166667 
11 0.766 1.72 0.578 0.591333333 
12 0.443 1.28 0.307 0.356666667 
13 0.787 1.742 0 0.4075 
14 0.469 1.295 0.304 0.365583333 
15 0.014 1.912 0.006 0.166 
16 0.006 1.888 0.011 0.163 
17 0.465 1.271 0.272 0.351583333 
18 0.921 1.907 0.764 0.720583333 
19 0.785 1.752 0 0.407666667 
20 0.791 1.755 0.597 0.608916667 
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Figure 61.   Screening Model Statistics for OPSIT 1 
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Table 42.   RSM Design for OPSIT 2  

  

SAM Range 
(km) 

Radar Frequency 
(MHz) 

# SAM Radar Peak 
Power (kW) 

Antenna 
Diameter (m) 

Gun Range 
(km) 

1 25.5 5.2 12 192.5 3.55 12 

2 25.5 5.2 12 192.5 6.3 14 

3 45 0.9 16 25 6.3 12 

4 6 0.9 16 360 6.3 12 

5 45 0.9 8 360 0.8 16 

6 25.5 5.2 12 192.5 3.55 16 

7 45 0.9 16 360 0.8 12 

8 45 9.5 8 360 0.8 12 

9 25.5 5.2 16 192.5 3.55 14 

10 45 9.5 16 360 0.8 16 

11 25.5 5.2 12 192.5 3.55 14 

12 25.5 5.2 8 192.5 3.55 14 

13 25.5 5.2 12 360 3.55 14 

14 6 9.5 16 360 6.3 16 

15 6 9.5 8 25 0.8 12 

16 25.5 5.2 12 192.5 0.8 14 

17 6 0.9 16 360 0.8 16 

18 25.5 5.2 12 25 3.55 14 

19 45 9.5 16 25 0.8 12 

20 6 9.5 16 25 0.8 16 

21 45 0.9 8 360 6.3 12 

22 25.5 0.9 12 192.5 3.55 14 

23 6 0.9 8 360 6.3 16 

24 25.5 9.5 12 192.5 3.55 14 

25 45 0.9 8 25 6.3 16 

26 45 9.5 16 360 6.3 12 

27 6 0.9 16 25 6.3 16 

28 45 0.9 8 25 0.8 12 

29 6 5.2 12 192.5 3.55 14 

30 6 9.5 8 360 0.8 16 

31 6 0.9 8 360 0.8 12 

32 6 0.9 16 25 0.8 12 

33 6 0.9 8 25 0.8 16 

34 6 9.5 8 360 6.3 12 

35 45 9.5 16 25 6.3 16 

36 45 0.9 16 25 0.8 16 
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37 45 9.5 8 360 6.3 16 

38 6 9.5 8 25 6.3 16 

39 6 9.5 16 360 0.8 12 

40 6 0.9 8 25 6.3 12 

41 45 9.5 8 25 6.3 12 

42 6 9.5 16 25 6.3 12 

43 45 5.2 12 192.5 3.55 14 

44 25.5 5.2 12 192.5 3.55 14 

45 45 0.9 16 360 6.3 16 

46 45 9.5 8 25 0.8 16 

 

Table 43.   RSM Responses for OPSIT 2  

  Pier 
Survivability 

Aircraft 
Killed 

PES 
Survivability 

MOE 

1 0.669 1.594 0.416 0.4945 
2 0.655 1.566 0.309 0.451833333 

3 0.786 1.746 0.59 0.604166667 
4 0.791 1.751 0.102 0.443583333 
5 0.451 1.265 0.287 0.351416667 
6 0.646 1.557 0.455 0.49675 

7 0.768 1.731 0.58 0.593583333 
8 0.448 1.27 0.291 0.352166667 
9 0.813 1.78 0.587 0.615 

10 0.797 1.763 0.613 0.616916667 

11 0.639 1.576 0.423 0.485333333 
12 0.439 1.234 0.324 0.357166667 
13 0.645 1.558 0.427 0.487166667 
14 0.759 1.716 0.345 0.511 

15 0.466 1.302 0.302 0.3645 
16 0.671 1.588 0.406 0.491333333 
17 0.779 1.746 0.098 0.437833333 
18 0.665 1.601 0.455 0.50675 

19 0.808 1.778 0.586 0.612833333 
20 0.779 1.743 0.102 0.438916667 
21 0.471 1.288 0.289 0.360666667 
22 0.635 1.542 0.417 0.479166667 

23 0.461 1.294 0.313 0.365833333 

24 0.652 1.556 0.42 0.487 
25 0.445 1.241 0.306 0.35375 
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26 0.779 1.739 0.414 0.542583333 
27 0.781 1.738 0.105 0.440166667 
28 0.011 1.282 0.253 0.194833333 
29 0.647 1.58 0.385 0.475666667 

30 0.45 1.278 0.318 0.3625 
31 0.455 1.282 0.319 0.364833333 
32 0.009 1.744 0.014 0.153 
33 0.01 1.257 0.298 0.207416667 

34 0.455 1.298 0.208 0.329166667 
35 0.784 1.754 0.615 0.6125 
36 0.011 1.729 0.009 0.15075 
37 0.448 1.272 0.201 0.322333333 

38 0.468 1.273 0.307 0.364416667 
39 0.774 1.732 0.097 0.434666667 
40 0.451 1.281 0.307 0.359416667 
41 0.456 1.278 0.297 0.3575 

42 0.802 1.769 0.107 0.450416667 
43 0.635 1.554 0.426 0.483166667 
44 0.645 1.572 0.426 0.488 
45 0.791 1.753 0.617 0.615416667 

46 0.467 1.29 0.325 0.3715 
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Figure 62.   RSM Statistics for OPSIT 2 
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Table 44.   RSM Design and Responses for OPSIT 3  

  Sonar Frequency 
(Hz) 

Power (W) Diameter 
Array (m) 

High Array 
(m) 

MOE (PES 
Survivability) 

1 5400 55500 1.22 0.885 0.9878 
2 2200 96000 0.85 0.55 0.352 
3 5400 55500 1.035 0.55 0.8648 

4 2200 96000 0.85 1.22 0.9096 
5 8600 96000 1.22 1.22 0.9878 
6 2200 15000 0.85 0.55 0.0764 
7 5400 55500 1.035 1.22 0.9886 

8 2200 55500 1.035 0.885 0.7678 
9 8600 15000 0.85 1.22 0.934 

10 5400 15000 1.035 0.885 0.796 
11 8600 15000 1.22 0.55 0.7836 

12 5400 55500 0.85 0.885 0.9672 
13 2200 96000 1.22 0.55 0.738 
14 8600 55500 1.035 0.885 0.9868 
15 2200 96000 1.22 1.22 0.9874 

16 2200 15000 1.22 0.55 0.1112 
17 8600 96000 0.85 1.22 0.9884 
18 5400 96000 1.035 0.885 0.9874 
19 5400 55500 1.035 0.885 0.9888 

20 8600 15000 1.22 1.22 0.987 
21 2200 15000 0.85 1.22 0.2532 
22 8600 96000 0.85 0.55 0.983 
23 8600 96000 1.22 0.55 0.9884 

24 5400 55500 1.035 0.885 0.987 
25 2200 15000 1.22 1.22 0.6746 
26 8600 15000 0.85 0.55 0.4498 

 

 



 

 118 

 

 
Figure 63.   RSM Statistics for OPSIT 3 
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Table 45.   Screening Design for OPSIT 4  

  Radar Tx 
Power 

Antenna 
Diameter 

Radar 
Freq. 

#SSM SSM 
Speed 

SSM 
Range 

#SAM SAM 
Speed 

SAM 
Range 

CWIS Decoys 

1 360 6.3 9.5 4 108 220 24 1360 45 NO NO 
2 25 0.8 0.9 4 476 220 24 1360 45 YES YES 
3 25 0.8 9.5 12 476 220 24 680 6 NO NO 

4 360 6.3 0.9 12 108 220 24 680 6 YES YES 
5 192.5 3.55 5.2 8 292 135 16 1020 25.5 NO NO 
6 25 6.3 0.9 12 108 50 24 680 45 YES NO 
7 360 6.3 9.5 4 476 50 8 680 6 YES YES 

8 25 0.8 0.9 12 108 220 24 1360 45 NO NO 
9 360 0.8 9.5 12 108 220 8 1360 6 YES NO 

10 360 0.8 0.9 12 108 50 24 1360 6 NO YES 
11 360 6.3 0.9 4 476 220 24 680 6 NO NO 

12 25 0.8 9.5 4 108 220 24 680 6 YES YES 
13 25 0.8 9.5 4 476 50 8 1360 45 NO NO 
14 360 6.3 9.5 12 108 50 8 680 6 NO NO 
15 360 0.8 0.9 4 108 220 8 680 45 NO YES 

16 25 6.3 0.9 4 476 50 24 680 45 NO YES 
17 360 0.8 0.9 12 476 220 8 680 45 YES NO 
18 192.5 3.55 5.2 8 292 135 16 1020 25.5 NO YES 
19 25 6.3 0.9 12 476 220 8 1360 6 NO YES 

20 25 0.8 0.9 12 476 50 8 680 6 YES YES 
21 25 6.3 9.5 4 476 220 8 680 45 YES NO 
22 360 0.8 0.9 4 476 50 24 1360 6 YES NO 
23 25 6.3 9.5 12 476 50 24 1360 6 YES NO 

24 360 6.3 9.5 12 476 220 24 1360 45 YES YES 
25 25 6.3 0.9 4 108 220 8 1360 6 YES NO 
26 360 0.8 9.5 4 476 220 8 1360 6 NO YES 
27 360 6.3 0.9 4 108 50 8 1360 45 YES YES 

28 360 0.8 9.5 12 476 50 24 680 45 NO YES 
29 25 0.8 9.5 12 108 50 8 1360 45 YES YES 
30 25 0.8 0.9 4 108 50 8 680 6 NO NO 
31 25 6.3 9.5 12 108 220 8 680 45 NO YES 

32 25 6.3 9.5 4 108 50 24 1360 6 NO YES 
33 360 0.8 9.5 4 108 50 24 680 45 YES NO 
34 360 6.3 0.9 12 476 50 8 1360 45 NO NO 
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Table 46.   Screening Responses for OPSIT 4  

 M1 Red 
SC Killed 

M2 LST 
Killed 

M3 PES 
Hits 

MOE 

1 0 0 0.259 0.326645 
2 0 0 5.467467 0.192142 
3 0.235235 0.322322 12.90791 0.185853 

4 0.245245 0.36036 5.522523 0.392588 
5 0.011011 0.013013 3.288288 0.256425 
6 0.252252 0.318318 0.181181 0.518845 
7 0 0 5.383383 0.194313 

8 0.236236 0.351351 12.81782 0.198189 
9 0.225225 0.321321 11.06807 0.229694 

10 0.249249 0.316316 6.397397 0.356649 
11 0 0 12.71872 0.004886 

12 0 0 5.565566 0.189608 
13 0.001001 0 12.74675 0.004495 
14 0.229229 0.335335 12.78879 0.191264 
15 0 0 6.301301 0.170609 

16 0 0 0.151151 0.32943 
17 0.232232 0.315315 10.87988 0.234888 
18 0.011011 0.007007 1.636637 0.297075 
19 0.23023 0.327327 6.359359 0.354962 

20 0.259259 0.345345 5.484484 0.393237 
21 0 0 10.94695 0.05064 
22 0 0 10.89089 0.052087 
23 0.247247 0.332332 10.92893 0.244298 

24 0.238238 0.32032 0.096096 0.517038 
25 0 0 10.86286 0.052811 
26 0 0 6.482482 0.16593 
27 0 0 3.187187 0.251028 

28 0.219219 0.341341 6.458458 0.353404 
29 0.22022 0.298298 5.530531 0.363353 
30 0 0 12.88989 0.000465 
31 0.212212 0.329329 6.37037 0.349339 

32 0 0 6.466466 0.166344 
33 0 0 10.91291 0.051519 
34 0.249249 0.347347 7.881882 0.328657 
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Figure 64.   Screening Model Statistics for OPSIT 4 
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Table 47.   RSM Design for OPSIT 4  

  Radar Tx 
Power 

Antenna 
Diameter 

Radar 
Freq. 

#SSM SSM 
Speed 

#SAM SAM 
Range 

CWIS 

1 192.5 3.55 9.5 8 292 16 25.5 0.5 

2 192.5 3.55 5.2 8 292 16 25.5 0.5 
3 360 6.3 9.5 12 108 24 45 1 
4 360 0.8 0.9 4 476 8 6 0 
5 192.5 3.55 5.2 12 292 16 25.5 0.5 

6 360 6.3 0.9 4 476 8 45 0 
7 360 6.3 9.5 12 476 24 6 0 
8 25 6.3 0.9 12 108 8 45 1 
9 25 0.8 0.9 4 108 8 45 0 

10 25 6.3 9.5 4 476 8 6 1 
11 25 6.3 9.5 12 108 24 45 0 
12 360 0.8 0.9 12 108 24 45 1 
13 25 6.3 0.9 12 108 24 6 0 

14 192.5 3.55 5.2 8 292 24 25.5 0.5 
15 25 0.8 9.5 4 476 24 6 0 
16 360 6.3 9.5 4 108 24 6 0 
17 360 0.8 0.9 12 108 8 6 0 

18 360 0.8 9.5 4 108 8 6 1 
19 25 0.8 0.9 4 476 8 6 1 
20 360 6.3 0.9 4 108 24 45 0 
21 25 0.8 0.9 12 476 8 45 0 

22 25 0.8 9.5 12 476 24 45 1 
23 360 6.3 9.5 12 108 8 6 0 
24 192.5 3.55 5.2 8 292 16 6 0.5 
25 25 6.3 0.9 12 476 24 45 1 

26 360 0.8 9.5 4 108 24 45 0 
27 192.5 3.55 5.2 8 292 8 25.5 0.5 
28 360 0.8 0.9 4 108 24 6 0 
29 25 6.3 9.5 12 476 24 6 1 

30 25 6.3 0.9 4 476 8 45 1 
31 25 0.8 9.5 4 108 8 6 0 
32 360 0.8 9.5 12 108 8 45 0 
33 25 6.3 9.5 4 108 8 45 0 

34 25 0.8 0.9 12 108 24 45 0 
35 360 6.3 0.9 12 108 24 6 1 
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36 25 6.3 0.9 12 476 8 6 0 

37 25 6.3 9.5 12 108 8 6 1 
38 25 0.8 0.9 4 108 24 6 1 
39 360 0.8 0.9 4 476 24 45 1 

40 192.5 3.55 5.2 8 292 16 25.5 0 
41 360 6.3 0.9 12 476 8 6 1 
42 25 6.3 0.9 4 108 8 6 0 
43 192.5 3.55 5.2 8 108 16 25.5 0.5 

44 360 6.3 0.9 4 476 24 6 1 
45 360 0.8 9.5 4 476 24 6 1 
46 360 0.8 9.5 4 476 8 45 0 
47 192.5 3.55 5.2 8 292 16 25.5 0.5 

48 360 6.3 0.9 4 108 8 6 1 
49 192.5 3.55 5.2 8 292 16 45 0.5 
50 25 6.3 9.5 4 108 24 6 1 
51 360 6.3 0.9 12 476 24 45 0 

52 360 0.8 0.9 12 476 8 45 1 
53 360 0.8 9.5 12 108 24 6 1 
54 360 0.8 9.5 12 476 24 45 0 
55 360 0.8 9.5 12 476 8 6 1 

56 25 0.8 9.5 4 108 24 45 1 
57 25 6.3 9.5 12 476 8 45 0 
58 192.5 3.55 5.2 8 292 16 25.5 1 
59 360 6.3 0.9 12 108 8 45 0 

60 25 0.8 9.5 12 108 24 6 0 
61 360 6.3 9.5 12 476 8 45 1 
62 192.5 3.55 5.2 4 292 16 25.5 0.5 
63 192.5 0.8 5.2 8 292 16 25.5 0.5 

64 192.5 3.55 5.2 8 476 16 25.5 0.5 
65 25 0.8 9.5 12 108 8 45 1 
66 360 6.3 9.5 4 476 24 45 1 
67 25 3.55 5.2 8 292 16 25.5 0.5 

68 360 6.3 9.5 4 108 8 45 1 
69 25 0.8 0.9 12 108 8 6 1 
70 25 6.3 0.9 4 108 24 45 1 
71 360 0.8 0.9 4 108 8 45 1 

72 192.5 6.3 5.2 8 292 16 25.5 0.5 
73 25 0.8 9.5 12 476 8 6 0 
74 25 0.8 0.9 12 476 24 6 1 
75 25 6.3 9.5 4 476 24 45 0 
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76 360 3.55 5.2 8 292 16 25.5 0.5 

77 25 0.8 0.9 4 476 24 45 0 
78 192.5 3.55 0.9 8 292 16 25.5 0.5 
79 360 6.3 9.5 4 476 8 6 0 

80 360 0.8 0.9 12 476 24 6 0 
81 25 0.8 9.5 4 476 8 45 1 
82 25 6.3 0.9 4 476 24 6 0 

 

Table 48.   RSM Responses for OPSIT 4  

 M1 Red 
SC Killed 

M2 LST 
Killed 

M3 PES 
Hits 

MOE 

1 0.003 0.009 6.55 0.168186 
2 0.008 0.015 1.707 0.296918 
3 0.233 0.336 0.095 0.520547 
4 0 0 6.455 0.16664 

5 0.244 0.326 1.706 0.479278 
6 0 0 3.952 0.231277 
7 0.231 0.331 6.314 0.357614 
8 0.238 0.322 3.143 0.438835 

9 0.244 0.326 1.706 0.479278 
10 0 0 5.412 0.193574 
11 0.23 0.326 6.392 0.3536 
12 0.223 0.335 5.498 0.377353 

13 0.202 0.311 6.318 0.341178 
14 0.006 0.012 0.152 0.335408 
15 0.001 0 6.46 0.166844 
16 0 0 6.379 0.168602 

17 0.257 0.337 6.362 0.367041 
18 0 0 5.4 0.193884 
19 0 0 5.516 0.190888 
20 0 0 0.176 0.328788 

21 0.252 0.323 6.384 0.36014 
22 0.218 0.304 5.563 0.363675 
23 0.223 0.308 5.483 0.368741 
24 0.001 0.01 6.361 0.172734 

25 0.262 0.324 0.113 0.525749 
26 0 0 6.324 0.170023 
27 0.007 0.009 4.008 0.235164 
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28 0 0 6.477 0.166072 

29 0.257 0.334 5.43 0.390109 
30 0 0 3.21 0.250438 
31 0 0 6.444 0.166924 

32 0.263 0.349 6.336 0.373713 
33 0 0 6.374 0.168731 
34 0.24 0.321 6.414 0.354698 
35 0.253 0.348 5.505 0.391506 

36 0.225 0.313 6.347 0.348762 
37 0.262 0.284 5.4 0.375884 
38 0 0 5.408 0.193677 
39 0 0 5.437 0.192928 

40 0.004 0.01 1.685 0.294487 
41 0.247 0.303 5.428 0.376494 
42 0 0 6.39 0.168318 
43 0.011 0.007 1.664 0.296362 

44 0 0 5.415 0.193497 
45 0 0 5.412 0.193574 
46 0 0 6.453 0.166691 
47 0.003 0.012 1.636 0.296085 

48 0 0 5.421 0.193342 
49 0.008 0.01 1.716 0.295019 
50 0 0 5.431 0.193083 
51 0.232 0.276 0.173 0.498199 

52 0.249 0.331 5.449 0.385952 
53 0.249 0.351 5.503 0.391224 
54 0.23 0.332 6.35 0.356685 
55 0.26 0.328 5.438 0.388903 

56 0 0 5.568 0.189546 
57 0.243 0.33 6.347 0.360429 
58 0.01 0.012 1.237 0.308722 
59 0.203 0.327 3.94 0.408254 

60 0.25 0.31 6.46 0.353177 
61 0.223 0.312 3.225 0.428384 
62 0 0 1.605 0.291886 
63 0.015 0.011 6.479 0.174687 

64 0.005 0.011 1.665 0.29567 
65 0.233 0.351 5.655 0.381965 
66 0 0 0.107 0.33057 
67 0.006 0.01 6.389 0.173677 
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68 0 0 3.189 0.250981 

69 0.256 0.331 5.349 0.390868 
70 0 0 0.106 0.330596 
71 0 0 5.369 0.194684 

72 0.012 0.013 1.58 0.300865 
73 0.247 0.324 6.481 0.356302 
74 0.225 0.336 5.49 0.37856 
75 0 0 6.397 0.168137 

76 0.005 0.01 1.61 0.296757 
77 0 0 6.337 0.169687 
78 0.01 0.012 1.632 0.298522 
79 0 0 6.466 0.166356 

80 0.267 0.319 6.394 0.363548 
81 0 0 5.531 0.190501 
82 0 0 6.327 0.169945 

 

 
Figure 65.   RSM Statistics for OPSIT 4 (Summary) 
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Figure 66.   RSM Statistics for OPSIT 4 (Parameter Estimates) 
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